Skip to main content

Query Reformulation in PDMS Based on Social Relevance

  • Chapter
  • First Online:
  • 427 Accesses

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 8420))

Abstract

We consider peer-to-peer data management systems (PDMS), where each peer maintains mappings between its schema and some acquaintances, along with social links with peer friends. In this context, we deal with reformulating conjunctive queries from a peer’s schema into other peer’s schemas. Precisely, queries against a peer node are rewritten into queries against other nodes using schema mappings thus obtaining query rewritings. Unfortunately, not all the obtained rewritings are relevant to a given query, as the information gain may be negligible or the peer is not worth exploring. On the other hand, the existence of social links with peer friends might be useful to get relevant rewritings. Therefore, we propose a new notion of ‘relevance’ of a query with respect to a mapping that encompasses both a local relevance (the relevance of the query w.r.t. the mapping) and a global relevance (the relevance of the query w.r.t. the entire network). Based on this notion, we have conceived a new query reformulation approach for social PDMS which achieves great accuracy and flexibility. To this purpose, we combine several techniques: (i) social links are expressed as FOAF (Friend of a Friend) links to characterize peer’s friendship; (ii) concise mapping summaries are used to obtain mapping descriptions; (iii) local semantic views (LSV) are special views that contain information about mappings captured from the network by using gossiping techniques. Our experimental evaluation, based on a prototype on top of PeerSim and a simulated network demonstrate that our solution yields greater recall, compared to traditional query translation approaches proposed in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This example has been inspired by a web-based online trusted physician network, https://www.ozmosis.com/home, ‘where good doctors go to become great doctors’.

  2. 2.

    Notice that the relevance of a mapping is useful to discriminate the importance of such mapping wrt other mappings. Indeed, the relevance is a criterion to rank mappings in order to choose the best ones towards which the query has to be translated.

  3. 3.

    Notice that a friendship link between two peers is a symmetric relationship and does not imply that such peers have to be acquaintances with each other.

  4. 4.

    Notice that we do not tackle the problem of merging results after applying the query rewriting to the acquaintance’s database, but we take the union of these results.

  5. 5.

    Notice that we do not also assume the existence of the mapping \(\mathcal{M}_{ji}\), from peer \(p_j\) to peer \(p_i\).

  6. 6.

    The mapping statements have been omitted from Fig. 4 to avoid clutter.

  7. 7.

    In DHTs or structured P2P networks, on which PDMS are based, a unique key identifier is assigned to each peer and object. IDs associated with objects are mapped through the DHT protocol to the peer responsible for that object. In our setting, each object is a mapping.

References

  1. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: The chatty web: emergent semantics through gossiping. In: WWW (2003)

    Google Scholar 

  2. Arenas, M., Pérez J, Reutter, J.L., Riveros, C.: Foundations of schema mapping management.  In: PODS, pp. 227–238. ACM, New York (2010)

    Google Scholar 

  3. Arenas, M., PTrez, J., Riveros, C.: The Recovery of a Schema Mapping: Bringing Exchanged Data Back. In: ACM PODS, pp. 13–22 (2008)

    Google Scholar 

  4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)

    Article  Google Scholar 

  5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  6. Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S., Pottinger, R., Chung, Y.: Schema mapping and query translation in heterogeneous P2P XML databases. VLDB J. 19(2), 231–256 (2010)

    Article  Google Scholar 

  7. Bonifati, A., Chrysanthis, P.K., Ouksel, A.M., Sattler, K.: Distributed databases and peer-to-peer databases: past and present. SIGMOD Record 37(1), 5–11 (2008)

    Article  Google Scholar 

  8. Bonifati, A., Liu, R., Wang, H(.W).: Distributed and secure access control in P2P databases. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security and Privacy XXIV. LNCS, vol. 6166, pp. 113–129. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema mapping verification: the spicy way. In: EDBT, pp. 85–96 (2008)

    Google Scholar 

  10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R., Ruzzi, M.: Data integration through \({{DL-Lite}_{\cal {A}}}\) ontologies. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925, pp. 26–47. Springer, Heidelberg (2008)

    Google Scholar 

  11. Fagin, R.: Inverting Schema Mappings. ACM TODS 32(4), 25:1–25:53 (2007)

    Article  Google Scholar 

  12. Fagin, R., Haas, L.M., Hernández, M., Miller, R., Popa, L., Velegrakis, Y.: Clio: schema mapping creation and data exchange. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 198–236. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. TCS 336(1), 89–124 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fan, L., Cao, P., Almeida, J.M., Broder, A.Z.: Summary cache: a scalable wide-area web cache sharing protocol. In: SIGCOMM, pp. 254–265 (1998)

    Google Scholar 

  16. Halevy, A.Y., Ives, Z.G., Suciu, D., Tatarinov, I.: Schema mediation for large-scale semantic data sharing. VLDB J. 14(1), 68–83 (2005)

    Article  Google Scholar 

  17. Hose, K., Roth, A., Zeitz, A., Sattler, K., Naumann, F.: A research agenda for query processing in large-scale peer data management systems. Inf. Syst. 33(7–8), 597–610 (2008)

    Article  Google Scholar 

  18. Ives, Z.G., Halevy, A.Y., Mork, P., Tatarinov, I.: Piazza: mediation and integration infrastructure for Semantic Web data. J. Web Sem. 1(2), 155–175 (2004)

    Article  Google Scholar 

  19. Kantere, V., Tsoumakos, D., Sellis, T.K., Roussopoulos, N.: GrouPeer: Dynamic clustering of P2P databases. Inf. Syst. 34(1), 62–86 (2009)

    Article  Google Scholar 

  20. Kementsietsidis, A., Arenas, M., Miller, R.J.: Mapping data in peer-to-peer systems: semantics and algorithmic issues. In: SIGMOD, pp. 325–336 (2003)

    Google Scholar 

  21. Kermarrec, A., van Steen, M.: Gossiping in distributed systems. Operating Systems Review 41(5), 2–7 (2007)

    Article  Google Scholar 

  22. Koloniari, G., Pitoura, E.: Content-based routing of path queries in peer-to-peer systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 29–47. Springer, Heidelberg (2004)

    Google Scholar 

  23. Lenzerini, M.: Data integration: a theoretical perspective. In: ACM PODS, pp. 233–246 (2002)

    Google Scholar 

  24. Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using views. In: PODS (1995)

    Google Scholar 

  25. The Peersim simulator. http://peersim.sf.net

  26. Popa, L., Velegrakis, Y., Miller, R.J., Hernandez, M.A., Fagin, R.: Translating web data. In: VLDB (2002)

    Google Scholar 

  27. Pottinger, R., Halevy, A.Y.: Minicon: a scalable algorithm for answering queries using views. VLDB J. 10(2–3), 182–198 (2001)

    MATH  Google Scholar 

  28. Bai X., Bertier, M., Guerraoui, R., Kermarrec, A.M., Leroy, V.: Gossiping personalized queries. In: EDBT, pp. 87–98 (2010)

    Google Scholar 

  29. Yu, C., Popa, L.: Constraint-based XML query rewriting for data integration. In: SIGMOD (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianvito Summa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonifati, A., Summa, G., Pacitti, E., Draidi, F. (2014). Query Reformulation in PDMS Based on Social Relevance. In: Hameurlain, A., Küng, J., Wagner, R. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XIII. Lecture Notes in Computer Science(), vol 8420. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54426-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54426-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54425-5

  • Online ISBN: 978-3-642-54426-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics