Advertisement

Optimal Algorithms for Constrained 1-Center Problems

  • Luis Barba
  • Prosenjit Bose
  • Stefan Langerman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

We address the following problem: Given two subsets Γ and Φ of the plane, find the minimum enclosing circle of Γ whose center is constrained to lie on Φ. We first study the case when Γ is a set of n points and Φ is either a set of points, a set of segments (lines) or a simple polygon. We propose several algorithms, the first solves the problem when Φ is a set of m segments (or m points) in expected Θ((n + m)logω) time, where ω =  min {n, m}. Surprisingly, when Φ is a simple m-gon, we can improve the expected running time to Θ(m + nlogn). Moreover, if Γ is the set of vertices of a convex n-gon and Φ is a simple m-gon, we can solve the problem in expected Θ(n + m) time. We provide matching lower bounds in the algebraic computation tree model for all the algorithms presented in this paper. While proving these results, we obtained a Ω(n logm) lower bound for the following problem: Given two sets A and B in ℝ of sizes m and n, respectively, decide if A is a subset of B.

Keywords

minimum enclosing circle facility location problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Guibas, L., Saxe, J., Shor, P.: A linear time algorithm for computing the Voronoi diagram of a convex polygon. In: Proceedings of STOC, pp. 39–45. ACM, New York (1987)Google Scholar
  2. 2.
    Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proceedings of STOC, pp. 80–86. ACM, New York (1983)Google Scholar
  3. 3.
    Bose, P., Langerman, S., Roy, S.: Smallest enclosing circle centered on a query line segment. In: Proceedings of CCCG, pp. 167–170 (2008)Google Scholar
  4. 4.
    Bose, P., Toussaint, G.: Computing the constrained Euclidean, geodesic and link centre of a simple polygon with applications. In: Proceedings of CGI, pp. 102–111 (1996)Google Scholar
  5. 5.
    Bose, P., Wang, Q.: Facility location constrained to a polygonal domain. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 153–164. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Chan, T.M.: Geometric applications of a randomized optimization technique. Discrete and Computational Geometry 22, 547–567 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: Diameter, width, closest line pair, and parametric searching. DCG 10, 183–196 (1993)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Hurtado, F., Sacristan, V., Toussaint, G.: Some constrained minimax and maximim location problems. Studies in Locational Analysis 15, 17–35 (2000)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Joe, B., Simpson, R.B.: Corrections to Lee’s visibility polygon algorithm. BIT Numerical Mathematics 27, 458–473 (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    Lee, D.T.: Farthest neighbor Voronoi diagrams and applications. Report 80-11-FC-04, Dept. Elect. Engrg. Comput. Sci. (1980)Google Scholar
  11. 11.
    Lee, D.T.: On finding the convex hull of a simple polygon. International Journal of Parallel Programming 12(2), 87–98 (1983)zbMATHGoogle Scholar
  12. 12.
    Matousek, J.: Computing the center of planar point sets. Discrete and Computational Geometry 6, 221 (1991)Google Scholar
  13. 13.
    Matoušek, J.: Construction of epsilon nets. In: Proceedings of SCG, pp. 1–10. ACM, New York (1989)Google Scholar
  14. 14.
    Megiddo, N.: Linear-time algorithms for linear programming in ℝ3 and related problems. SIAM J. Comput. 12(4), 759–776 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Preparata, F.: Minimum spanning circle. In: Preparata, F.P. (ed.) Steps in Computational Geometry. University of Illinois (1977)Google Scholar
  16. 16.
    Shamos, M., Hoey, D.: Closest-point problems. In: Proceedings of FOCS, pp. 151–162. IEEE Computer Society, Washington, DC (1975)Google Scholar
  17. 17.
    Sylvester, J.J.: A Question in the Geometry of Situation. Quarterly Journal of Pure and Applied Mathematics 1 (1857)Google Scholar
  18. 18.
    Yao, A.C.-C.: Decision tree complexity and Betti numbers. In: Proceedings of STOC, pp. 615–624. ACM, New York (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luis Barba
    • 1
    • 2
  • Prosenjit Bose
    • 1
  • Stefan Langerman
    • 2
  1. 1.Carleton UniversityOttawaCanada
  2. 2.Université Libre de BruxellesBrusselsBelgium

Personalised recommendations