Advertisement

Approximating Vector Scheduling: Almost Matching Upper and Lower Bounds

  • Nikhil Bansal
  • Tjark Vredeveld
  • Ruben van der Zwaan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

We consider the vector scheduling problem, a natural generalization of the classical makespan minimization problem to multiple resources. Here, we are given n jobs represented as d-dimensional vectors in [0,1] d and m identical machines, and the goal is to assign the jobs to machines such that the maximum load of each machine over all the coordinates is at most 1.

For fixed d, the problem admits an approximation scheme, and the best known running time is n f(ε,d) where \(f(\epsilon,d) = (1/\epsilon)^{\tilde{O}(d)}\) (\(\tilde{O}\) supresses polylogarithmic terms in d). In particular, the dependence on d is doubly exponential.

In this paper we show that a double exponential dependence on d is necessary, and give an improved algorithm with essentially optimum running time. Specifically, we show that:

  • For any ε < 1, there is no (1 + ε)-approximation with running time \(\exp(o(\lfloor 1/\epsilon \rfloor ^{d/3}))\) unless the Exponential Time Hypothesis fails.

  • No (1 + ε)-approximation with running time \(\exp( \lfloor 1/\epsilon \rfloor^{o(d)})\) exists, unless NP has subexponential time algorithms.

  • Similar lower bounds also hold even if εm extra machines are allowed (i.e. with resource augmentation), for sufficiently small ε > 0.

  • We complement these lower bounds with a (1 + ε)-approximation that runs in time \(\exp((1/\epsilon)^{O(d \log \log d)}) + nd\). This gives the first efficient approximation scheme (EPTAS) for the problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel machines. Journal of Scheduling 1, 55–66 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types. CoRR, abs/1205.0974 (2012)Google Scholar
  3. 3.
    Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause width and clause density for SAT. In: IEEE Conference on Computational Complexity, pp. 252–260. IEEE Computer Society (2006)Google Scholar
  4. 4.
    Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM J. Comput. 33(4), 837–851 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34(5), 564–568 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Epstein, L., Tassa, T.: Vector assignment problems: a general framework. J. Algorithms 48(2), 360–384 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Epstein, L., Tassa, T.: Vector assignment schemes for asymmetric settings. Acta Inf. 42(6-7), 501–514 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7, 49–65 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)Google Scholar
  10. 10.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM J. Comput. 17(3), 539–551 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Jansen, K.: An eptas for scheduling jobs on uniform processors: Using an milp relaxation with a constant number of integral variables. SIAM J. Discrete Math. 24(2), 457–485 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kannan, R.: Minkowskis convex body theorem and integer programming. Mathematics of Operations Research 12, 415–440 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the onedimensional bin-packing problem. In: FOCS, pp. 312–320 (1982)Google Scholar
  16. 16.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8(4), 538–548 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Meyerson, A., Roytman, A., Tagiku, B.: Online multidimensional load balancing. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/ RANDOM 2013. LNCS, vol. 8096, pp. 287–302. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Rothvoß, T.: Approximating bin packing within O(log OPT log log OPT) bins. In: FOCS (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nikhil Bansal
    • 1
  • Tjark Vredeveld
    • 2
  • Ruben van der Zwaan
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands
  2. 2.Maastricht UniversityThe Netherlands

Personalised recommendations