Skip to main content

Complexity of Coloring Graphs without Paths and Cycles

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

Abstract

Let P t and C denote a path on t vertices and a cycle on ℓ vertices, respectively. In this paper we study the k-COLORING problem for (P t ,C )-free graphs. It has been shown by Golovach, Paulusma, and Song that when ℓ = 4 all these problems can be solved in polynomial time. By contrast, we show that in most other cases the k-COLORING problem for (P t ,C )-free graphs is NP-complete. Specifically, for ℓ = 5 we show that k-COLORING is NP-complete for (P t ,C 5)-free graphs when k ≥ 4 and t ≥ 7; for ℓ ≥ 6 we show that k-COLORING is NP-complete for (P t ,C )-free graphs when k ≥ 5, t ≥ 6; and additionally, we prove that 4-COLORING is NP-complete for (P t ,C )-free graphs when t ≥ 7 and ℓ ≥ 6 with ℓ ≠ 7, and that 4-COLORING is NP-complete for (P t ,C )-free graphs when t ≥ 9 and ℓ ≥ 6 with ℓ ≠ 9. It is known that, generally speaking, for large k the k-COLORING problem tends to remain NP-complete when one forbids an induced path P t with large t. Our findings mean that forbidding an additional induced cycle C (with ℓ > 4) does not help. We also revisit the problem of k-COLORING (P t ,C 4)-free graphs, in the case t = 6. (For t = 5 the k-COLORING problem is known to be polynomial even on just P 5-free graphs, for every k.) The algorithms of Golovach, Paulusma, and Song are not practical as they depend on Ramsey-type results, and end up using tree-decompositions with very high widths. We develop more practical algorithms for 3-COLORING and 4-COLORING on (P 6,C 4)-free graphs. Our algorithms run in linear time if a clique cutset decomposition of the input graph is given. Moreover, our algorithms are certifying algorithms. We provide a finite list of all minimal non-k-colorable (P 6,C 4)-free graphs, for k = 3 and k = 4. Our algorithms output one of these minimal obstructions whenever a k-coloring is not found. In fact, we prove that there are only finitely many minimal non-k-colorable (P 6,C 4)-free graphs for any fixed k; however, we do not have the explicit lists for higher k, and thus no certifying algorithms. (We note there are infinitely many non-k-colorable P 5-free, and hence P 6-free, graphs for any given k ≥ 4, according to a result of Hoàng, Moore, Recoskie, Sawada, and Vatshelle.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer Graduate Texts in Mathematics, vol. 244 (2008)

    Google Scholar 

  2. Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the Maximum Weight Stable Set Problem. Theoretical Computer Science 389, 295–306 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Broersma, H.J., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three complexity results on coloring P k -free graphs. European Journal of Combinatorics (2012) (in press)

    Google Scholar 

  4. Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity status of coloring graphs without a fixed induced learn forest. Theoret. Comput. Sci. 414, 9–19 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bruce, D., Hoàng, C.T., Sawada, J.: A certifying algorithm for 3-colorability of p 5-free graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 594–604. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Chudnovsky, M., Maceli, P., Zhong, M.: Three-coloring graphs with no induced six-edge path I: the triangle-free case (in preparation)

    Google Scholar 

  7. Chudnovsky, M., Maceli, P., Zhong, M.: Three-coloring graphs with no induced six-edge path II: using a triangle (in preparation)

    Google Scholar 

  8. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Annals of Mathematics 64, 51–229 (2006)

    Article  MathSciNet  Google Scholar 

  9. Dabrowski, K., Golovach, P., Paulusma, D.: Colouring of graphs with Ramsey-type forbidden subgraphs (submitted)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman San Faranciso (1979)

    Google Scholar 

  11. Golovach, P.A., Paulusma, D., Song, J.: Coloring graphs without short cycles and long induced paths (2013), http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/girth.pdf

  12. Golumbic, M.C.: Algorithmic graph theory and perfect graphs, San Diego (1980)

    Google Scholar 

  13. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Ann. Discrete Math. 21, 325–356 (1984), Topics on Perfect Graphs

    Google Scholar 

  14. Hoàng, C.T., Kamiński, M., Lozin, V.V., Sawada, J., Shu, X.: Deciding k-colorability of P 5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Holyer, I.: The NP-completeness of edge coloring. SIAM J. Comput. 10, 718–720 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang, S.: Improved complexity results on k-coloring P t -free graphs. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 551–558. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or long cycles. Contrib. Discrete. Mah. 2, 61–66 (2007)

    MATH  Google Scholar 

  18. Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Le, V.B., Randerath, B., Schiermeyer, I.: On the complexity of 4-coloring graphs without long induced paths. Theoret. Comput. Sci. 389, 330–335 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Leven, D., Galil, Z.: NP-completeness of finding the chromatic index of regular graphs. J. Algorithm 4, 35–44 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Randerath, B., Schiermeyer, I.: 3-Colorability ∈ P for P 6-free graphs. Discrete Appl. Math. 136, 299–313 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Randerath, B., Schiermeyer, I.: Vertex colouring and fibidden subgraphs-a survey. Graphs Combin. 20, 1–40 (2004)

    Google Scholar 

  23. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC 1978, pp. 216–226 (1978)

    Google Scholar 

  24. Tarjan, R.E.: Decomposition by clique separators. Discrete Mathematics 55, 221–232 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tuza, Z.: Graph colorings with local restrictions-a survey. Discuss. Math. Graph Theory 17, 161–228 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Woeginger, G.J., Sgall, J.: The complexity of coloring graphs without long induced paths. Acta Cybernet. 15, 107–117 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hell, P., Huang, S. (2014). Complexity of Coloring Graphs without Paths and Cycles. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics