Skip to main content

The Flip Diameter of Rectangulations and Convex Subdivisions

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

  • 1186 Accesses

Abstract

We study the configuration space of rectangulations and convex subdivisions of n points in the plane. It is shown that a sequence of O(nlogn) elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of n points. This bound is the best possible for some point sets, while Θ(n) operations are sufficient and necessary for others. Some of our bounds generalize to convex subdivisions of n points in the plane.

Löffler is partially supported by the NWO (639.021.123). Allen, Mermelstein, Souvaine, and Tóth are supported in part by the NSF (CCF-0830734).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, E.: Counting Problems for Geometric Structures: Rectangulations, Floorplans, and Quasi-Planar Graphs, Ph.D. thesis, Technion—Israel Inst. of Technology (2006)

    Google Scholar 

  2. Ackerman, E., Barequet, G., Pinter, R.Y.: On the number of rectangulations of a planar point set, J. Combin. Theory, Ser. A. 113(6), 1072–1091 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Asinowski, A., Barequet, G., Bousquet-Mélou, M., Mansour, T., Pinter, R.Y.: Orders induced by segments in floorplans and (2-14-3,3-41-2)-avoiding permutations. Electr. J. Comb. 20(2), P35 (2013)

    Google Scholar 

  4. Bose, P., Buss, J., Lubiw, A.: Pattern matching for permutations. Inf. Proc. Lett. 65, 277–283 (1998)

    Article  MathSciNet  Google Scholar 

  5. Buchin, K., Eppstein, D., Löffler, M., Nöllenburg, M., Silveira, R.I.: Adjacency-preserving spatial treemaps. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 159–170. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Trans. Algorithms 4, 28 (2008)

    MathSciNet  Google Scholar 

  7. Calheiros, F.C., Lucena, A., de Souza, C.C.: Optimal rectangular partitions. Networks 41(1), 51–67 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cardei, M., Cheng, X., Cheng, X., Du, D.Z.: A tale on guillotine cut. In: Proc. Novel Approaches to Hard Discrete Optimization, Ontario, Canada (2001)

    Google Scholar 

  9. Chazelle, B.: The Discrepancy Method. Cambridge University Press (2000)

    Google Scholar 

  10. de Fraysseix, H., de Mendez, P.O., Pach, J.: A left-first search algorithm for planar graphs. Discrete Comput. Geom. 13(1), 459–468 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duchet, P., Hamidoune, Y., Las Vergnas, M., Meyniel, H.: Representing a planar graph by vertical lines joining different levels. Discrete Math. 46, 319–321 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Du, D.Z., Pan, L.Q., Shing, M.T.: Minimum edge length guillotine rectangular partition, Technical Report MSRI 02418-86, University of California, Berkeley, CA (1986)

    Google Scholar 

  13. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and constrained rectangular layouts. SIAM J. Comput. 41(3), 537–564 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Felsner, S.: Exploiting air-pressure to map floorplans on point sets. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 196–207. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays in Geometric Graph Theory, pp. 213–248. Springer, New York (2013)

    Chapter  Google Scholar 

  16. Felsner, S., Fusy, É., Noy, M., Orden, D.: Bijections for Baxter families and related objects. J. Comb. Theory, Ser. A 118(3), 993–1020 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gonzalez, T.F., Zheng, S.-Q.: Improved bounds for rectangular and guillotine partitions. J. of Symbolic Computation 7, 591–610 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gonzalez, T.F., Zheng, S.-Q.: Approximation algorithms for partitioning a rectangle with interior points. Algorithmica 5, 11–42 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hasan, M. M., Rahman, M. S., Karim, M. R.: Box-rectangular drawings of planar graphs. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 334–345. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover, and set packing problems. Discrete Appl. Math. 6, 243–254 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22(3), 333–346 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Koźimiński, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 15, 145–157 (1985)

    Article  MathSciNet  Google Scholar 

  23. Lawson, C.: Software for c 1 surface interpolation. In: Rice, J. (ed.) Mathematical Software III, pp. 161–194. Academic Press, New York (1977)

    Google Scholar 

  24. Levcopoulos, C.: Fast heuristics for minimum length rectangular partitions of polygons. In: Proc. 2nd ACM Symp. on Computational Geometry, Yorktown Heights, NY, pp. 100–108 (1986)

    Google Scholar 

  25. Liao, C.C., Lu, H.I., Yen, H.C.: Compact floor-planning via orderly spanning trees. J. Algorithms 48, 441–451 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lingas, A., Pinter, R.Y., Rivest, R.L., Shamir, A.: Minimum edge length rectilinear decompositions of rectilinear figures. In: Proc. 20th Allerton Conf. on Communication, Control, and Computing, Monticello, IL, pp. 53–63 (1982)

    Google Scholar 

  27. Rahman, M., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. J. Algorithms 50, 62–78 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Raisz, E.: The rectangular statistical cartogram. Geogr. Rev. 24(3), 292–296 (1934)

    Article  Google Scholar 

  29. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: The four-colour theorem. J. Combin. Theory, Ser. B 70(1), 2–44 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Santos, F., Seidel, R.: A better upper bound on the number of triangulations of a planar point set. J. Combin. Theory, Ser. A 102, 186–193 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sharir, M., Welzl, E.: Random triangulations of planar point sets. In: Proc. 22nd ACM Symp. on Comput. Geom., pp. 273–281. ACM Press (2006)

    Google Scholar 

  32. Sleator, D., Tarjan, R., Thurston, W.: Rotations distance, triangulations and hyperbolic geometry. J. AMS 1, 647–682 (1988)

    MATH  MathSciNet  Google Scholar 

  33. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Dicrete Comput. Geom. 1, 321–341 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  34. Turán, P.: On an extremal problem in graph theory. Math. Fiz. Lapok 48, 436–452 (1941) (in Hungarian)

    Google Scholar 

  35. Ungar, P.: On diagrams representing graphs. J. London Math. Soc. 28, 336–342 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yao, B., Chen, H., Cheng, C.K., Graham, R.: Floorplan representations: Complexity and connections. ACM Trans. on Design Automation of Electronic Systems 8, 55–80 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ackerman, E. et al. (2014). The Flip Diameter of Rectangulations and Convex Subdivisions. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics