LATIN 2014: LATIN 2014: Theoretical Informatics pp 466-477

# Equivalence Classes of Random Boolean Trees and Application to the Catalan Satisfiability Problem

• Antoine Genitrini
• Cécile Mailler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

## Abstract

An and/or tree is a binary plane tree, with internal nodes labelled by connectives, and with leaves labelled by literals chosen in a fixed set of k variables and their negations. We introduce the first model of such Catalan trees, whose number of variables k n is a function of n, its number of leaves. We describe the whole range of the probability distributions depending on the functions k n , as soon as it tends jointly with n to infinity. As a by-product we obtain a study of the satisfiability problem in the context of Catalan trees.

Our study is mainly based on analytic combinatorics and extends the Kozik’s pattern theory, first developed for the fixed-k Catalan tree model.

## Keywords

Random Boolean expressions Boolean formulas Boolean function Probability distribution Satisfiability Analytic combinatorics

## References

1. 1.
Achlioptas, D., Moore, C.: Random k-SAT: Two moments suffice to cross a sharp threshold. SIAM Journal of Computing 36(3), 740–762 (2006)
2. 2.
Chauvin, B., Flajolet, P., Gardy, D., Gittenberger, B.: And/Or trees revisited. Combinatorics, Probability and Computing 13(4-5), 475–497 (2004)
3. 3.
Daudé, H., Ravelomanana, V.: Random 2-XORSAT phase transition. Algorithmica 59(1), 48–65 (2011)
4. 4.
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge U.P. (2009)Google Scholar
5. 5.
Fournier, H., Gardy, D., Genitrini, A., Gittenberger, B.: The fraction of large random trees representing a given boolean function in implicational logic. Random Structures and Algorithms 40(3), 317–349 (2012)
6. 6.
Gardy, D.: Random Boolean expressions. In: Colloquium on Computational Logic and Applications, vol. AF, pp. 1–36. DMTCS (2006)Google Scholar
7. 7.
Genitrini, A., Gittenberger, B.: No Shannon effect on probability distributions on Boolean functions induced by random expressions. In: 21st Meeting Analysis of Algorithms, pp. 303–316 (2010)Google Scholar
8. 8.
Genitrini, A., Gittenberger, B., Kraus, V., Mailler, C.: Probabilities of Boolean functions given by random implicational formulas. Electronic Journal of Combinatorics 19(2), P37, 20 pages (electronic) (2012)Google Scholar
9. 9.
Genitrini, A., Kozik, J.: In the full propositional logic, 5/8 of classical tautologies are intuitionistically valid. Ann. of Pure and Applied Logic 163(7), 875–887 (2012)
10. 10.
Genitrini, A., Kozik, J., Zaionc, M.: Intuitionistic vs. Classical tautologies, quantitative comparison. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 100–109. Springer, Heidelberg (2008)
11. 11.
Kozik, J.: Subcritical pattern languages for And/Or trees. In: Fifth Colloquium on Mathematics and Computer Science. DMTCS Proceedings (2008)Google Scholar
12. 12.
Lefmann, H., Savický, P.: Some typical properties of large And/Or Boolean formulas. Random Structures and Algorithms 10, 337–351 (1997)
13. 13.
Sibuya, M.: Log-concavity of Stirling numbers and unimodality of Stirling distributions. Ann. of the Institute of Statistical Mathematics 40(4), 693–714 (1988)

## Authors and Affiliations

• Antoine Genitrini
• 1
• 2
• Cécile Mailler
• 3
1. 1.UMR 7606, LIP6Sorbonne Universités, UPMC Univ Paris 06ParisFrance
2. 2.UMR 7606, LIP6CNRSParisFrance
3. 3.Laboratoire de Mathématiques de Versailles; CNRS UMR 8100Université de Versailles Saint-Quentin-en-YvelinesVersaillesFrance