Advertisement

Equivalence Classes of Random Boolean Trees and Application to the Catalan Satisfiability Problem

  • Antoine Genitrini
  • Cécile Mailler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

An and/or tree is a binary plane tree, with internal nodes labelled by connectives, and with leaves labelled by literals chosen in a fixed set of k variables and their negations. We introduce the first model of such Catalan trees, whose number of variables k n is a function of n, its number of leaves. We describe the whole range of the probability distributions depending on the functions k n , as soon as it tends jointly with n to infinity. As a by-product we obtain a study of the satisfiability problem in the context of Catalan trees.

Our study is mainly based on analytic combinatorics and extends the Kozik’s pattern theory, first developed for the fixed-k Catalan tree model.

Keywords

Random Boolean expressions Boolean formulas Boolean function Probability distribution Satisfiability Analytic combinatorics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D., Moore, C.: Random k-SAT: Two moments suffice to cross a sharp threshold. SIAM Journal of Computing 36(3), 740–762 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Chauvin, B., Flajolet, P., Gardy, D., Gittenberger, B.: And/Or trees revisited. Combinatorics, Probability and Computing 13(4-5), 475–497 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Daudé, H., Ravelomanana, V.: Random 2-XORSAT phase transition. Algorithmica 59(1), 48–65 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge U.P. (2009)Google Scholar
  5. 5.
    Fournier, H., Gardy, D., Genitrini, A., Gittenberger, B.: The fraction of large random trees representing a given boolean function in implicational logic. Random Structures and Algorithms 40(3), 317–349 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Gardy, D.: Random Boolean expressions. In: Colloquium on Computational Logic and Applications, vol. AF, pp. 1–36. DMTCS (2006)Google Scholar
  7. 7.
    Genitrini, A., Gittenberger, B.: No Shannon effect on probability distributions on Boolean functions induced by random expressions. In: 21st Meeting Analysis of Algorithms, pp. 303–316 (2010)Google Scholar
  8. 8.
    Genitrini, A., Gittenberger, B., Kraus, V., Mailler, C.: Probabilities of Boolean functions given by random implicational formulas. Electronic Journal of Combinatorics 19(2), P37, 20 pages (electronic) (2012)Google Scholar
  9. 9.
    Genitrini, A., Kozik, J.: In the full propositional logic, 5/8 of classical tautologies are intuitionistically valid. Ann. of Pure and Applied Logic 163(7), 875–887 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Genitrini, A., Kozik, J., Zaionc, M.: Intuitionistic vs. Classical tautologies, quantitative comparison. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 100–109. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Kozik, J.: Subcritical pattern languages for And/Or trees. In: Fifth Colloquium on Mathematics and Computer Science. DMTCS Proceedings (2008)Google Scholar
  12. 12.
    Lefmann, H., Savický, P.: Some typical properties of large And/Or Boolean formulas. Random Structures and Algorithms 10, 337–351 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Sibuya, M.: Log-concavity of Stirling numbers and unimodality of Stirling distributions. Ann. of the Institute of Statistical Mathematics 40(4), 693–714 (1988)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Antoine Genitrini
    • 1
    • 2
  • Cécile Mailler
    • 3
  1. 1.UMR 7606, LIP6Sorbonne Universités, UPMC Univ Paris 06ParisFrance
  2. 2.UMR 7606, LIP6CNRSParisFrance
  3. 3.Laboratoire de Mathématiques de Versailles; CNRS UMR 8100Université de Versailles Saint-Quentin-en-YvelinesVersaillesFrance

Personalised recommendations