Coloring Graph Powers: Graph Product Bounds and Hardness of Approximation

  • Parinya Chalermsook
  • Bundit Laekhanukit
  • Danupon Nanongkai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)


We consider the question of computing the strong edge coloring, square graph coloring, and their generalization to coloring the k th power of graphs. These problems have long been studied in discrete mathematics, and their “chaotic” behavior makes them interesting from an approximation algorithm perspective: For k = 1, it is well-known that vertex coloring is “hard” and edge coloring is “easy” in the sense that the former has an n 1 − ε hardness while the latter admits a \((1+1/\varDelta)\)-approximation algorithm, where \(\varDelta\) is the maximum degree of a graph. However, vertex coloring becomes easier (can be \(O(\sqrt{n})\)-approximated) for k = 2 while edge coloring seems to become much harder (no known O(n 1 − ε )-approximation algorithm) for k ≥ 2.

In this paper, we make a progress towards closing the gap for the edge coloring problems in the power of graphs. First, we confirm that edge coloring indeed becomes computationally harder when k > 1: we prove a hardness of n 1/3 − ε for k ∈ {2, 3} and n 1/2 − ε for k ≥ 4 (previously, only NP-hardness for k = 2 is known). Our techniques allow us to derive an alternate proof of vertex coloring hardnesses as well as the hardness of maximum clique and stable set (a.k.a. independent set) problems on graph powers. These results rely on a common simple technique of proving bounds via fractional coloring, which allows us to prove some new bounds on graph products. Finally, we finish by presenting the proof of Erdös and Nešetřil conjecture on cographs, which uses a technique different from other results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnarsson, G., Greenlaw, R., Halldrsson, M.M.: On powers of chordal graphs and their colorings. Congr. Numer. 144, 41–65 (2000)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Agnarsson, G., Halldórsson, M.M.: Coloring powers of planar graphs. SIAM J. Discrete Math. 16(4), 651–662 (2003), also in SODA 2000Google Scholar
  3. 3.
    Alon, N., Mohar, B.: The chromatic number of graph powers. Combinatorics, Probability & Computing 11(1), 1–10 (2002)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Barrett, C.L., Istrate, G., Vilikanti, A.K., Marathe, M., Thite, S.V.: Approximation algorithms for distance-2 edge coloring. Tech. rep., Los Alamos National Lab., NM, US (2002)Google Scholar
  5. 5.
    Barrett, C.L., Kumar, V.S.A., Marathe, M.V., Thite, S., Istrate, G.: Strong edge coloring for channel assignment in wireless radio networks. In: PerCom Workshops, pp. 106–110 (2006)Google Scholar
  6. 6.
    Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Graph products revisited: Tight approximation hardness of induced matching, poset dimension and more. In: SODA, pp. 1557–1576 (2013)Google Scholar
  7. 7.
    Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced matching, and pricing: Connections and tight (subexponential time) approximation hardnesses. In: FOCS (2013)Google Scholar
  8. 8.
    Chlebík, M., Chlebíková, J.: Complexity of approximating bounded variants of optimization problems. Theor. Comput. Sci. 354(3), 320–338 (2006), preliminary version in FCT 2003Google Scholar
  9. 9.
    Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2010), CrossRefGoogle Scholar
  10. 10.
    Duckworth, W., Manlove, D., Zito, M.: On the approximability of the maximum induced matching problem. J. Discrete Algorithms 3(1), 79–91 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Erickson, J., Thite, S., Bunde, D.P.: Distance-2 edge coloring is NP-complete. CoRR abs/cs/0509100 (2005)Google Scholar
  12. 12.
    Faudree, R.J., Gyárfás, A., Schelp, R.H., Tuza, Z.: Induced matchings in bipartite graphs. Discrete Math. 78(1-2), 83–87 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Faudree, R.J., Gyárfás, A., Schelp, R.H., Tuza, Z.: The strong chromatic index of graphs. Ars. Combin. 29B, 205–2011 (1990)zbMATHGoogle Scholar
  14. 14.
    Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: CCC, pp. 278–287 (1996)Google Scholar
  15. 15.
    Halldórsson, M.M., Kratochvíl, J., Telle, J.A.: Independent sets with domination constraints. Discrete Appl. Math. 99(1-3), 39–54 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Håstad, J.: Clique is hard to approximate within n 1 − ε. In: FOCS, pp. 627–636 (1996)Google Scholar
  17. 17.
    Hell, P., Raspaud, A., Stacho, J.: On injective colourings of chordal graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 520–530. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Hocquard, H., Valicov, P.: Strong edge colouring of subcubic graphs. Discrete Appl. Math. 159(15), 1650–1657 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kaiser, T., Kang, R.J.: The distance-t chromatic index of graphs. Combinatorics, Probability and Computing 23, 90–101 (2014), CrossRefzbMATHGoogle Scholar
  20. 20.
    Kang, R.J., Manggala, P.: Distance edge-colourings and matchings. Discrete Applied Mathematics 160(16-17), 2435–2439 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Král, D.: Coloring powers of chordal graphs. SIAM J. Discrete Math. 18(3), 451–461 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Krumke, S.O., Marathe, M.V., Ravi, S.S.: Models and approximation algorithms for channel assignment in radio network. Wireless Networks 7(6), 575–584 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Laekhanukit, B.: Parameters of two-prover-one-round game and the hardness of connectivity problems. To appear in SODA 2014 (2014)Google Scholar
  24. 24.
    Lloyd, E.L., Ramanathan, S.: On the complexity of distance-2 coloring. In: ICCI, pp. 71–74 (1992)Google Scholar
  25. 25.
    Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383 (1975), CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Mahdian, M.: The strong chromatic index of graphs. Master’s thesis, University of Toronto (2000)Google Scholar
  27. 27.
    Mahdian, M.: On the computational complexity of strong edge coloring. Discrete Appl. Math. 118(3), 239–248 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    McCormick, S.: Optimal approximation of sparse hessians and its equivalence to a graph coloring problem. Math. Program. 26, 153–171 (1983),, doi:10.1007/BF02592052CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Misra, J., Gries, D.: A constructive proof of vizing’s theorem. Information Processing Letters 41(3), 131–133 (1992), CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Molloy, M.S.O., Reed, B.A.: A bound on the strong chromatic index of a graph. J. Comb. Theory, Ser. B 69(2), 103–109 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Ramanathan, S., Lloyd, E.L.: Scheduling algorithms for multihop radio networks. IEEE/ACM Trans. Netw. 1(2), 166–177 (1993), also in SODA 2000Google Scholar
  32. 32.
    Togni, O.: Strong chromatic index of products of graphs. Discrete Math. Theor. Comput. Sci. 9(1) (2007)Google Scholar
  33. 33.
    Zito, M.: Induced matchings in regular graphs and trees. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 89–100. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  34. 34.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing 3(1), 103–128 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Parinya Chalermsook
    • 1
  • Bundit Laekhanukit
    • 2
  • Danupon Nanongkai
    • 3
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.School of Computer ScienceMcGill UniversityCanada
  3. 3.ICERMBrown UniversityUSA

Personalised recommendations