O(n) Time Algorithms for Dominating Induced Matching Problems

  • Min Chih Lin
  • Michel J. Mizrahi
  • Jayme L. Szwarcfiter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)


We describe O(n) time algorithms for finding the minimum weighted dominating induced matching of chordal, dually chordal, biconvex, and claw-free graphs. For the first three classes, we prove tight O(n) bounds on the maximum number of edges that a graph having a dominating induced matching may contain. By applying these bounds, countings and employing existing O(n + m) time algorithms we show that they can be reduced to O(n) time. For claw–free graphs, we describe an algorithm based on that by Cardoso, Korpelainen and Lozin [4], for solving the unweighted version of the problem, which decreases its complexity from O(n 2) to O(n), while additionally solving the weighted version.


algorithms dominating induced matchings graph theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandstädt, A., Hundt, C., Nevries, R.: Efficient edge domination on hole-free graphs in polynomial time. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 650–661. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient Dominating and Edge Dominating Sets for Graphs and Hypergraphs. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 267–277. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Brandstädt, A., Mosca, R.: Dominating Induced Matchings for P 7-free Graphs in Linear Time. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 100–109. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Cardoso, D.M., Korpelainen, N., Lozin, V.V.: On the complexity of the dominating induced matching problem in hereditary classes of graphs. Discrete Applied Mathematics 159, 21–531 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, Z.-Z., Zhang, S.: Tight upper bound on the number of edges in a bipartite K 3,3-free or K 5-free graph with an application. Information Processing Letters 84, 141–145 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Grinstead, D.L., Slater, P.J., Sherwani, N.A., Holmes, N.D.: Efficient edge domination problems in graphs. Information Processing Letters 48, 221–228 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: Exact algorithms for dominating induced matchings. CoRR, abs/1301.7602 (2013)Google Scholar
  8. 8.
    Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: An O *(1.1939n) time algorithm for minimum weighted dominating induced matching. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 558–567. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Lu, C.L., Ko, M.-T., Tang, C.Y.: Perfect edge domination and efficient edge domination in graphs. Discrete Applied Mathematics 119, 227–250 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lu, C.L., Tang, C.Y.: Solving the weighted efficient edge domination problem on bipartite permutation graphs. Discrete Applied Mathematics 87, 203–211 (1998)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Min Chih Lin
    • 1
  • Michel J. Mizrahi
    • 1
  • Jayme L. Szwarcfiter
    • 2
    • 3
  1. 1.CONICET, Instituto de Cálculo and Departamento de ComputaciónUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.I. Mat., COPPE and NCEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Qualidade e TecnologiaInstituto Nacional de MetrologiaRio de JaneiroBrazil

Personalised recommendations