Advertisement

Improved Minmax Regret 1-Center Algorithms for Cactus Networks with c Cycles

  • Binay Bhattacharya
  • Tsunehiko Kameda
  • Zhao Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

In a facility location problem, if the vertex weights are uncertain one may look for a “robust” solution that minimizes “regret.” We present an O(nlogn) (resp. O(cnlogn)) time algorithm for a tree (resp. c-cycle cactus), where n is the number of vertices and c is a constant. Our tree algorithm presents an improvement over the previously known algorithms that run in O(nlog2 n) time. There is no previously published result tailored specifically for a cactus network. The best algorithm for a general network takes O(mn logn) time, where m is the number of edges.

Keywords

Edge Length Facility Location Problem Tree Network Vertex Weight Minimax Regret 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Averbakh, I.: Complexity of robust single-facility location problems on networks with uncertain lengths of edges. Disc. Appl. Math. 127, 505–522 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Averbakh, I., Berman, O.: Minimax regret p-center location on a network with demand uncertainty. Location Science 5, 247–254 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Averbakh, I., Berman, O.: Algorithms for the robust 1-center problem on a tree. European Journal of Operational Research 123(2), 292–302 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ben-Moshe, B., Bhattacharya, B., Shi, Q., Tamir, A.: Efficient algorithms for center problems in cactus networks. Theoretical Compter Science 378(3), 237–252 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Benkoczi, R.: Cardinality constrained facility location problems in trees. Ph.D. thesis, School of Computing Science, Simon Fraser University, Canada (2004)Google Scholar
  6. 6.
    Benkoczi, R., Bhattacharya, B., Chrobak, M., Larmore, L.L., Rytter, W.: Faster algorithms for k-medians in trees. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 218–227. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Bhattacharya, B., Kameda, T., Song, Z.: Minmax regret 1-center on a path/cycle/tree. In: Proc. 6th Int’l Conf. on Advanced Engineering Computing and Applications in Sciences (ADVCOMP), pp. 108–113 (2012), http://www.thinkmind.org/index.php?view=article&articleid=advcomp_2012_5_20_20093
  8. 8.
    Burkard, R., Dollani, H.: A note on the robust 1-center problem on trees. Annals of Operational Research 110, 69–82 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Burkard, R., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median problem on a cactus. Computing 60, 193–215 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Chazelle, B., Guibas, L.J.: Fractional cascading: II. Applications. Algorithmica 1, 163–191 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, B., Lin, C.S.: Minmax-regret robust 1-median location on a tree. Networks 31, 93–103 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Goldman, A.: Optimal center location in simple networks. Transportation Science 5, 212–221 (1971)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hakimi, S.: Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research 12, 450–459 (1964)zbMATHCrossRefGoogle Scholar
  14. 14.
    Hale, T.S., Moberg, C.R.: Location science research: A review. Annals of Operations Research 123, 21–35 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kouvelis, P., Vairaktarakis, G., Yu, G.: Robust 1-median location on a tree in the presence of demand and transportation cost uncertainty. Tech. Rep. Working Paper 93/94-3-4, Department of Management Science, The University of Texas, Austin (1993)Google Scholar
  16. 16.
    Megiddo, N.: Linear-time algorithms for linear-programming in R 3 and related problems. SIAM J. Computing 12, 759–776 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Megiddo, N., Tamir, A.: New results on the complexity of p-center problems. SIAM J. Computing 12, 751–758 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Tamir, A.: An O(pn 2) algorithm for the p-median and the related problems in tree graphs. Operations Research Letters 19, 59–64 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Yu, H.I., Lin, T.C., Wang, B.F.: Improved algorithms for the minmax-regret 1-center and 1-median problem. ACM Transactions on Algorithms 4(3), 1–1 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Binay Bhattacharya
    • 1
  • Tsunehiko Kameda
    • 1
  • Zhao Song
    • 2
  1. 1.School of Computing ScienceSimon Fraser UniversityCanada
  2. 2.Department of Computer ScienceThe University of Texas at AustinUSA

Personalised recommendations