Advertisement

Helly-Type Theorems in Property Testing

  • Sourav Chakraborty
  • Rameshwar Pratap
  • Sasanka Roy
  • Shubhangi Saraf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

Helly’s theorem is a fundamental result in discrete geometry, describing the ways in which convex sets intersect with each other. If S is a set of n points in ℝ d , we say that S is (k,G)-clusterable if it can be partitioned into k clusters (subsets) such that each cluster can be contained in a translated copy of a geometric object G. In this paper, as an application of Helly’s theorem, by taking a constant size sample from S, we present a testing algorithm for (k,G)-clustering, i.e., to distinguish between two cases: when S is (k,G)-clusterable, and when it is ε-far from being (k,G)-clusterable. A set S is ε-far (0 < ε ≤ 1) from being (k,G)-clusterable if at least εn points need to be removed from S to make it (k,G)-clusterable. We solve this problem for k = 1 and when G is a symmetric convex object. For k > 1, we solve a weaker version of this problem. Finally, as an application of our testing result, in clustering with outliers, we show that one can find the approximate clusters by querying a constant size sample, with high probability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Dar, S., Parnas, M., Ron, D.: Testing of clustering. SIAM J. Discrete Math. 16(3), 393–417 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Anderberg, M.R.: Cluster Analysis for Applications. Academic Press (1973)Google Scholar
  3. 3.
    Chakraborty, S., Pratap, R., Roy, S., Saraf, S.: Helly-type theorems in property testing. CoRR, abs/1307.8268 (2013)Google Scholar
  4. 4.
    Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers, pp. 642–651 (2001)Google Scholar
  5. 5.
    Czumaj, A., Sohler, C.: Property testing with geometric queries. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 266–277. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Czumaj, A., Sohler, C., Ziegler, M.: Property testing in computational geometry. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 155–166. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Danzer, L., Branko, B.G.: Intersection properties of boxes in ℝd. Combinatorica 2(3), 237–246 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Eckhoff, J.: An upper bound theorem for families of convex sets. Geom. Dediata 19(75), 217–227 (1985)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Goldreich, O.: Combinatorial property testing (a survey). Electronic Colloquium on Computational Complexity (ECCC) 4(56) (1997)Google Scholar
  10. 10.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Helly, E.: Über Mengen konvexer Köper mit gemeinschaftlichen Punkten (germen). Jahresber. Deutsch.Math. Verein (32), 175–176 (1923)Google Scholar
  12. 12.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering. Prentice-Hall (1988)Google Scholar
  13. 13.
    Kalai, G.: Intersection patterns of convex sets. Israel J. Math. (48), 161–174 (1984)Google Scholar
  14. 14.
    Katchalski, M., Nashtir, D.: On a conjecture of danzer and grunbaum. Proc. A.M.S (124), 3213–3218 (1996)Google Scholar
  15. 15.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley (1990)Google Scholar
  16. 16.
    Katchalski, M., Liu, A.: A problem of geometry in ℝn. Proc. A.M.S (75), 284–288 (1979)Google Scholar
  17. 17.
    Ron, D.: Property testing: A learning theory perspective. Foundations and Trends in Machine Learning 1(3), 307–402 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sourav Chakraborty
    • 1
  • Rameshwar Pratap
    • 1
  • Sasanka Roy
    • 1
  • Shubhangi Saraf
    • 2
  1. 1.Chennai Mathematical InstituteChennaiIndia
  2. 2.Department of Mathematics and Department of Computer ScienceRutgers UniversityUSA

Personalised recommendations