Helly-Type Theorems in Property Testing

  • Sourav Chakraborty
  • Rameshwar Pratap
  • Sasanka Roy
  • Shubhangi Saraf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)


Helly’s theorem is a fundamental result in discrete geometry, describing the ways in which convex sets intersect with each other. If S is a set of n points in ℝ d , we say that S is (k,G)-clusterable if it can be partitioned into k clusters (subsets) such that each cluster can be contained in a translated copy of a geometric object G. In this paper, as an application of Helly’s theorem, by taking a constant size sample from S, we present a testing algorithm for (k,G)-clustering, i.e., to distinguish between two cases: when S is (k,G)-clusterable, and when it is ε-far from being (k,G)-clusterable. A set S is ε-far (0 < ε ≤ 1) from being (k,G)-clusterable if at least εn points need to be removed from S to make it (k,G)-clusterable. We solve this problem for k = 1 and when G is a symmetric convex object. For k > 1, we solve a weaker version of this problem. Finally, as an application of our testing result, in clustering with outliers, we show that one can find the approximate clusters by querying a constant size sample, with high probability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Dar, S., Parnas, M., Ron, D.: Testing of clustering. SIAM J. Discrete Math. 16(3), 393–417 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Anderberg, M.R.: Cluster Analysis for Applications. Academic Press (1973)Google Scholar
  3. 3.
    Chakraborty, S., Pratap, R., Roy, S., Saraf, S.: Helly-type theorems in property testing. CoRR, abs/1307.8268 (2013)Google Scholar
  4. 4.
    Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers, pp. 642–651 (2001)Google Scholar
  5. 5.
    Czumaj, A., Sohler, C.: Property testing with geometric queries. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 266–277. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Czumaj, A., Sohler, C., Ziegler, M.: Property testing in computational geometry. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 155–166. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Danzer, L., Branko, B.G.: Intersection properties of boxes in ℝd. Combinatorica 2(3), 237–246 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Eckhoff, J.: An upper bound theorem for families of convex sets. Geom. Dediata 19(75), 217–227 (1985)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Goldreich, O.: Combinatorial property testing (a survey). Electronic Colloquium on Computational Complexity (ECCC) 4(56) (1997)Google Scholar
  10. 10.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Helly, E.: Über Mengen konvexer Köper mit gemeinschaftlichen Punkten (germen). Jahresber. Deutsch.Math. Verein (32), 175–176 (1923)Google Scholar
  12. 12.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering. Prentice-Hall (1988)Google Scholar
  13. 13.
    Kalai, G.: Intersection patterns of convex sets. Israel J. Math. (48), 161–174 (1984)Google Scholar
  14. 14.
    Katchalski, M., Nashtir, D.: On a conjecture of danzer and grunbaum. Proc. A.M.S (124), 3213–3218 (1996)Google Scholar
  15. 15.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley (1990)Google Scholar
  16. 16.
    Katchalski, M., Liu, A.: A problem of geometry in ℝn. Proc. A.M.S (75), 284–288 (1979)Google Scholar
  17. 17.
    Ron, D.: Property testing: A learning theory perspective. Foundations and Trends in Machine Learning 1(3), 307–402 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sourav Chakraborty
    • 1
  • Rameshwar Pratap
    • 1
  • Sasanka Roy
    • 1
  • Shubhangi Saraf
    • 2
  1. 1.Chennai Mathematical InstituteChennaiIndia
  2. 2.Department of Mathematics and Department of Computer ScienceRutgers UniversityUSA

Personalised recommendations