Advertisement

Hierarchical Complexity of 2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs Having Cliques of Size at Least 3

  • Helio B. Macêdo Filho
  • Raphael C. S. Machado
  • Celina M. H. Figueiredo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

A clique of a graph is a maximal set of vertices of size at least 2 that induces a complete graph. A k-clique-colouring of a graph is a colouring of the vertices with at most k colours such that no clique is monochromatic. Défossez proved that the 2-clique-colouring of perfect graphs is a \(\Sigma_2^P\)-complete problem [J. Graph Theory 62 (2009) 139–156]. We strengthen this result by showing that it is still \(\Sigma_2^P\)-complete for weakly chordal graphs. We then determine a hierarchy of nested subclasses of weakly chordal graphs whereby each graph class is in a distinct complexity class, namely \(\Sigma_2^P\)-complete, \(\mathcal{NP}\)-complete, and \(\mathcal{P}\). We solve an open problem posed by Kratochvíl and Tuza to determine the complexity of 2-clique-colouring of perfect graphs with all cliques having size at least 3 [J. Algorithms 45 (2002), 40–54], proving that it is a \(\Sigma_2^P\)-complete problem. We then determine a hierarchy of nested subclasses of perfect graphs with all cliques having size at least 3 whereby each graph class is in a distinct complexity class, namely \(\Sigma_2^P\)-complete, \(\mathcal{NP}\)-complete, and \(\mathcal{P}\).

Keywords

(α, β)-polar graphs clique-colouring hierarchical complexity perfect graphs weakly chordal graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacsó, G., Gravier, S., Gyárfás, A., Preissmann, M., Sebő, A.: Coloring the maximal cliques of graphs. SIAM J. Discrete Math. 17(3), 361–376 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Chernyak, Z.A., Chernyak, A.A.: About recognizing (α,β) classes of polar graphs. Discrete Math. 62(2), 133–138 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. of Math. (2) 164(1), 51–229 (2006)Google Scholar
  4. 4.
    Défossez, D.: Complexity of clique-coloring odd-hole-free graphs. J. Graph Theory 62(2), 139–156 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Duffus, D., Sands, B., Sauer, N., Woodrow, R.E.: Two-colouring all two-element maximal antichains. J. Combin. Theory Ser. A 57(1), 109–116 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Macêdo Filho, H.B., Machado, R.C.S., Figueiredo, C.M.H.: Clique-colouring and biclique-colouring unichord-free graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 530–541. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Kratochvíl, J., Tuza, Z.: On the complexity of bicoloring clique hypergraphs of graphs. J. Algorithms 45(1), 40–54 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Lovász, L.: Coverings and coloring of hypergraphs. In: Proc. Fourth Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 3–12 (1973)Google Scholar
  9. 9.
    Marx, D.: Complexity of clique coloring and related problems. Theoret. Comput. Sci. 412(29), 3487–3500 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Poon, H.: Coloring Clique Hypergraphs. Master’s thesis, West Virginia University (2000)Google Scholar
  11. 11.
    Prömel, H.J., Steger, A.: Almost all Berge graphs are perfect. Combin. Probab. Comput. 1(1), 53–79 (1992)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Helio B. Macêdo Filho
    • 1
  • Raphael C. S. Machado
    • 2
  • Celina M. H. Figueiredo
    • 1
  1. 1.COPPEUniversidade Federal do Rio de JaneiroBrazil
  2. 2.Inmetro — Instituto Nacional de Metrologia, Qualidade e TecnologiaBrazil

Personalised recommendations