Advertisement

Computing in the Presence of Concurrent Solo Executions

  • Maurice Herlihy
  • Sergio Rajsbaum
  • Michel Raynal
  • Julien Stainer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

In a wait-free model any number of processes may crash. A process runs solo when it computes its local output without receiving any information from other processes, either because they crashed or they are too slow. While in wait-free shared-memory models at most one process may run solo in an execution, any number of processes may have to run solo in an asynchronous wait-free message-passing model.

This paper is on the computability power of models in which several processes may concurrently run solo. It first introduces a family of round-based wait-free models, called the d-solo models, 1 ≤ d ≤ n, where up to d processes may run solo. The paper gives then a characterization of the colorless tasks that can be solved in each d-solo model. It also introduces the (d,ε)-solo approximate agreement task, which generalizes ε-approximate agreement, and proves that (d,ε)-solo approximate agreement can be solved in the d-solo model, but cannot be solved in the (d + 1)-solo model. The paper studies also the relation linking d-set agreement and (d,ε)-solo approximate agreement in asynchronous wait-free message-passing systems.

These results establish for the first time a hierarchy of wait-free models that, while weaker than the basic read/write model, are nevertheless strong enough to solve non-trivial tasks.

Keywords

Convex Hull Iterate Model Barycentric Subdivision Approximate Agreement Communication Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message passing systems. Journal of the ACM 42(1), 121–132 (1995)CrossRefGoogle Scholar
  2. 2.
    Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environment. Journal of the ACM 37(3), 524–548 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Proc. 12th ACM Symposium on Principles of Distributed Computing (PODC 1993), pp. 41–51 (1993)Google Scholar
  4. 4.
    Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of wait-free computations. In: Proc. 16th ACM PODC 1997, pp. 189–198 (1997)Google Scholar
  5. 5.
    Chaudhuri, S.: More choices allow more faults: set consensus problems in totally asynchronous systems. Information and Computation 105, 132–158 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approximate agreement in the presence of faults. Journal of the ACM 33(3), 499–516 (1986)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Elrad, T.E., Francez, N.: Decomposition of distributed programs into communication-closed layers. Science of Computer Programming 2(3), 155–173 (1982)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(2), 374–382 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gafni, E., Guerraoui, R.: Generalized universality. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 17–27. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Gafni, E., Rajsbaum, S.: Distributed programming with tasks. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 205–218. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Herlihy, M.P.: Wait-free synchronization. ACM TOPLAS 13(1), 124–149 (1991)CrossRefGoogle Scholar
  12. 12.
    Herlihy, M.P., Rajsbaum, S.: The topology of shared-memory adversaries. In: Proc. 29th ACM Symp. on Principles of Distr. Computing (PODC 2010), pp. 105–113. ACM Press (2010)Google Scholar
  13. 13.
    Herlihy, M.P., Rajsbaum, S.: A classification of wait-free loop agreement tasks. Theoretical Computer Science 291(1), 55–77 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Herlihy, M.P., Rajsbaum, S., Raynal, M., Stainer, J.: Computing in the Presence of Concurrent Solo Executions. Tech. Report 2004, IRISA (France), 19 pages (2013)Google Scholar
  15. 15.
    Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability. Journal of the ACM 46(6), 858–923 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unreliable asynchronous processes. Adv. in Comp. Research, vol. 4, pp. 163–183. JAI Press (1987)Google Scholar
  17. 17.
    Mendes, H., Herlihy, M.P.: Multidimensional approximate agreement in Byzantine asynchronous systems. In: 45th ACM Symp. on the Theory of Comp. (STOC 2013), pp. 391–400 (2013)Google Scholar
  18. 18.
    Munkres, J.R.: Elements of algebraic topology, 547 pages. Addison-Wesley (1984)Google Scholar
  19. 19.
    Raynal, M.: Concurrent programming: algorithms, principles, and foundations, 515 pages. Springer (2013) ISBN 978-3-642-32027-9Google Scholar
  20. 20.
    Vaidya, N.H., Garg, V.K.: Byzantine vector consensus in complete graphs. In: Proc. 32nd ACM Symposium on Principles of Distributed Computing (PODC 2013). ACM Press (2013)Google Scholar
  21. 21.
    Zeeman, E.C.: Relative simplicial approximation. Proc. Mathematical Proceedings of the Cambridge Philosophical Society 60, 39–43 (1964)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Maurice Herlihy
    • 1
  • Sergio Rajsbaum
    • 2
  • Michel Raynal
    • 3
    • 4
  • Julien Stainer
    • 4
  1. 1.Brown UniversityProvidenceUSA
  2. 2.Instituto de MathematicasUNAMMexico
  3. 3.Institut Universitaire de FranceFrance
  4. 4.INRIAIRISA Université de Rennes 1Rennes CedexFrance

Personalised recommendations