Periodic Planar Straight-Frame Drawings with Polynomial Resolution

  • Luca Castelli Aleardi
  • Éric Fusy
  • Anatolii Kostrygin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)


We present a new algorithm to compute periodic (planar) straight-line drawings of toroidal graphs. Our algorithm is the first to achieve two important aesthetic criteria: the drawing fits in a straight rectangular frame, and the grid area is polynomial, precisely the grid size is O(n 4×n 4). This solves one of the main open problems in a recent paper by Duncan et al. [3].


Shift Algorithm Outer Frame Schnyder Wood Outer Vertex Toroidal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chambers, E., Eppstein, D., Goodrich, M., Loffler, M.: Drawing Graphs in the Plane with a Prescribed Outer Face and Polynomial Area. JGAA 16(2), 243–259 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Castelli Aleardi, L., Devillers, O., Fusy, É.: Canonical Ordering for Triangulations on the Cylinder, with Applications to Periodic Straight-Line Drawings. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 376–387. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Duncan, C., Goodrich, M., Kobourov, S.: Planar drawings of higher-genus graphs. Journal of Graph Algorithms and Applications 15, 13–32 (2011)CrossRefMathSciNetGoogle Scholar
  4. 4.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Gonçalves, D., Lévêque, B.: Toroidal maps: Schnyder woods, orthogonal surfaces and straight-line representation. arXiv:1202.0911 (2012)Google Scholar
  6. 6.
    Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. ACM Trans. on Graphics 22(3), 358–363 (2003)CrossRefGoogle Scholar
  7. 7.
    Grimm, C.: Parameterization using Manifolds. Int. J. of Shape Modeling 10(1), 51–82 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kocay, W., Neilson, D., Szypowski, R.: Drawing graphs on the torus. Ars Combinatoria 59, 259–277 (2001)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Mohar, B.: Straight-line representations of maps on the torus and other flat surfaces. Discrete Mathematics 15, 173–181 (1996)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Schnyder, W.: Embedding planar graphs on the grid. In: SODA, pp. 138–148 (1990)Google Scholar
  12. 12.
    Tutte, W.: How to draw a graph. Proc. of London Math. Soc. 13, 734–767 (1963)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luca Castelli Aleardi
    • 1
  • Éric Fusy
    • 1
  • Anatolii Kostrygin
    • 1
  1. 1.LIXÉcole PolytechniqueFrance

Personalised recommendations