Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division in Power Circuits

  • Volker Diekert
  • Alexei G. Myasnikov
  • Armin Weiß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)


The conjugacy problem is the following question: given two words x, y over generators of a fixed group G, decide whether x and y are conjugated, i.e., whether there exists some z such that zx z − 1 = y in G. The conjugacy problem is more difficult than the word problem, in general. We investigate the conjugacy problem for two prominent groups: the Baumslag-Solitar group BS 1,2 and the Baumslag(-Gersten) group G 1,2. The conjugacy problem in BS 1,2 is TC 0-complete. To the best of our knowledge BS 1,2 is the first natural infinite non-commutative group where such a precise and low complexity is shown. The Baumslag group G 1,2 is an HNN-extension of BS 1,2 and its conjugacy problem is decidable G 1,2 by a result of Beese (2012). Here we show that conjugacy in G 1,2 can be solved in polynomial time in a strongly generic setting. This means that essentially for all inputs conjugacy in G 1,2 can be decided efficiently. In contrast, we show that under a plausible assumption the average case complexity of the same problem is non-elementary. Moreover, we provide a lower bound for the conjugacy problem in G 1,2 by reducing the division problem in power circuits to the conjugacy problem in G 1,2. The complexity of the division problem in power circuits is an open and interesting problem in integer arithmetic.


Algorithmic group theory power circuit generic case complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumslag, G.: A non-cyclic one-relator group all of whose finite quotients are cyclic. J. Austr. Math. Soc. 10(3-4), 497–498 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Beese, J.: Das Konjugationsproblem in der Baumslag-Gersten-Gruppe. Diploma thesis, Fakultät Mathematik, Universität Stuttgart (2012) (in German)Google Scholar
  3. 3.
    Borovik, A.V., Myasnikov, A.G., Remeslennikov, V.N.: Generic Complexity of the Conjugacy Problem in HNN-Extensions and Algorithmic Stratification of Miller’s Groups. IJAC 17, 963–997 (2007)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Ceccherini-Silberstein, T., Grigorchuk, R.I., de la Harpe, P.: Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces. Tr. Mat. Inst. Steklova 224, 68–111 (1999)Google Scholar
  5. 5.
    Craven, M.J., Jimbo, H.C.: Evolutionary algorithm solution of the multiple conjugacy search problem in groups, and its applications to cryptography. Groups Complexity Cryptology 4, 135–165 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Diekert, V., Laun, J., Ushakov, A.: Efficient algorithms for highly compressed data: The word problem in Higman’s group is in P. IJAC 22, 1–19 (2012)MathSciNetGoogle Scholar
  7. 7.
    Diekert, V., Miasnikov, A., Weiß, A.: Conjugacy in Baumslag’s group, generic case complexity, and division in power circuits. CoRR, abs/1309.5314 (2013)Google Scholar
  8. 8.
    Gersten, S.M.: Isodiametric and isoperimetric inequalities in group extensions (1991)Google Scholar
  9. 9.
    Grigoriev, D., Shpilrain, V.: Authentication from matrix conjugation. Groups Complexity Cryptology 1, 199–205 (2009)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Hesse, W.: Division is in uniform TC0. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 104–114. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. JCCS 65, 695–716 (2002)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Kapovich, I., Miasnikov, A.G., Schupp, P., Shpilrain, V.: Generic-case complexity, decision problems in group theory and random walks. J. Algebra 264, 665–694 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Average-case complexity and decision problems in group theory. Adv. Math. 190, 343–359 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Lyndon, R., Schupp, P.: Combinatorial Group Theory, 1st edn. (1977)Google Scholar
  15. 15.
    Magnus, W.: Das Identitätsproblem für Gruppen mit einer definierenden Relation. Math. Ann. 106, 295–307 (1932)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Miller III, C.F.: On group-theoretic decision problems and their classification. Annals of Mathematics Studies, vol. 68. Princeton University Press (1971)Google Scholar
  17. 17.
    Myasnikov, A., Shpilrain, V., Ushakov, A.: Group-based Cryptography. Advanced courses in mathematics. CRM Barcelona, Birkhäuser (2008)zbMATHGoogle Scholar
  18. 18.
    Myasnikov, A.G., Ushakov, A., Won, D.W.: The Word Problem in the Baumslag group with a non-elementary Dehn function is polynomial time decidable. Journal of Algebra 345, 324–342 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Myasnikov, A.G., Ushakov, A., Won, D.W.: Power circuits, exponential algebra, and time complexity. IJAC 22, 51 pages (2012)Google Scholar
  20. 20.
    Shpilrain, V., Zapata, G.: Combinatorial group theory and public key cryptography. Appl. Algebra Eng. Comm. Comput. 17, 291–302 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)CrossRefGoogle Scholar
  22. 22.
    Woess, W.: Random walks on infinite graphs and groups - a survey on selected topics. London Math. Soc. 26, 1–60 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Univ. Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Volker Diekert
    • 1
  • Alexei G. Myasnikov
    • 2
  • Armin Weiß
    • 1
  1. 1.FMIUniversität StuttgartStuttgartGermany
  2. 2.Department of MathematicsStevens Institute of TechnologyHobokenUSA

Personalised recommendations