Skip to main content

Material Properties of Scale and Comb Wax

  • Chapter
  • First Online:
Honeybee Nests

Abstract

Although the honeybee nest begins with the conversion of wax scales into combs, these two materials differ in their chemistry, crystal structure, tensile strength and stiffness which, in turn, are modified by honeybee secretions during comb-building. The strength of wax scales is about the same at temperatures between 25 and 35 °C, but declines above 35 °C; in contrast, comb wax is weaker and progressively decreases in strength with increasing temperature. The relative workability of wax scale is about the same between 25 and 45 °C, but it is the converse with comb wax. Wax scales are stronger and more distensible, but less stiff than comb wax at 35 °C, and require more energy to work than comb. The reworking of constructed comb is significantly more cost-effective than starting comb-building from scratch. Salvaging old comb wax is also energetically advantageous. Differences in the mechanical properties of scale and comb wax show that comb-building involves chemical modification of the waxes. The relative amounts and kinds of lipids affect comb stiffness amongst species. Likewise, differing kinds and amounts of protein in the waxes affect their mechanical properties. Highly-textured scales are converted from an anisotropic into an isotropic state. Lipases added during chewing modify the lipid composition of the scale in which stiffness is lost, but regained with the addition of proteins in comb-building. Beeswaxes are crystalline, the crystallites in wax scales are aligned, some perpendicular to the surface, others between 62° and 65° to the surface. Their origin is probably due to a fusion of the liquid products reaching the surface from the different cells in the wax gland complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfonsus EC (1933) Some sources of propolis. Glean Bee Cult 61:92–93

    Google Scholar 

  • Ambronn H (1892) Anleitung zur Benutzung der Polarisationsmikroskops bei histologischen Untersuchungen. (Cited from Schmidt 1941)

    Google Scholar 

  • Arnhart L (1906) Die Zwischenräume zwischen den Wachsdrussenzellen der Honigbiene. Zool Anz 30:719–721

    Google Scholar 

  • Astor A (1899) Notes d’un observation. Rev Int Apic 21:252–257

    Google Scholar 

  • Atkins EDT (1967) A four-strand coiled-coil model for some insect fibrous proteins. J Mol Biol 24:139–141

    Article  CAS  Google Scholar 

  • Bankova VS, de Castro SL, Marcucci MC (2000) Propolis: recent advances in chemistry and plant origin. Apidologie 31:3–15

    Article  CAS  Google Scholar 

  • Bankova VS, Popova M, Trusheva B (2006) Plant sources of propolis: an update from a chemist’s point of view. Nat Prod Commun 1:1023–1028

    CAS  Google Scholar 

  • Basson I, Reynhardt EC (1988) An investigation of the structures and molecular dynamics of natural waxes. I. Beeswax. J Phys D: Appl Phys 21:1421–1428

    Article  CAS  Google Scholar 

  • Betts A (1921) Propolising. Bee Wld 2:131–132

    Google Scholar 

  • Brewster D (1815) Experiments on the depolarisation of light as exhibited by various mineral, animal, and vegetable bodies, with a reference to the general principles of polarisation. Phil Trans R Soc Lond B 104:187–211

    Article  Google Scholar 

  • Buchwald R, Breed MD, Greenberg AR, Otis G (2006) Interspecific variation in beeswax as a biological construction material. J Exp Biol 209:3984–3989

    Article  PubMed  Google Scholar 

  • Buchwald R, Breed MD, Bjostad L, Hibbard BE, Greenberg AR (2009) The role of fatty acids in the mechanical properties of beeswax. Apidologie 40:585–594

    Article  CAS  Google Scholar 

  • Cassier P, Lensky Y (1995) Ultrastructure of the wax gland complex and secretion of beeswax in the worker honey bee, Apis mellifera L. Apidologie 26:17–26

    Article  Google Scholar 

  • Casteel DB (1912) The manipulation of the wax scales of the honey bee. Circ US Bur Entomol No 161:l–13

    Google Scholar 

  • Cesàro G (1903) Sur un curieux phénomene d’orientation par laminage. Bull Acad R Belg Sci, pp 432–441

    Google Scholar 

  • Chauvin R (1962) Sur le noircissement der vieilles cires. Ann Abeille Paris 5:59–63

    Article  Google Scholar 

  • Chibnall AC, Piper SH (1934) The metabolism of plant and insect waxes. Biochem J 34:2209–2219

    Google Scholar 

  • Darchen R (1980) La cire, son recyclage et son rôle probable à l’intérior d’une colonie d’Apis mellifica. Apidologie 11:193–202

    Article  Google Scholar 

  • Davidson BC, Hepburn HR (1986) Transformations of the acylglycerols in comb construction by honeybees. Naturwissenschaften 73:159–160

    Article  CAS  Google Scholar 

  • Donhowe IG, Fennema O (1992) The effect of relative humidity gradient on water vapor permeance of lipid and lipid-hydrocolloid bilayer films. J Am Oil Chem Soc 69:1081–1087

    Article  CAS  Google Scholar 

  • Dorset DL (1995) The crystal structure of waxes. Acta Cryst B Struct Sci 51:1021–1027

    Article  Google Scholar 

  • Dorset DL (1997) Crystallography of waxes—an electron diffraction study of refined and natural products. J Phys Lond D Appl Phys 30:451–457

    Article  CAS  Google Scholar 

  • Dorset DL (1999) Development of lamellar structures in natural waxes—an electron diffraction investigation. J Phys Lond D Appl Phys 30:1276–1280

    Article  Google Scholar 

  • Dorset DL, Ghiradella H (1983) Insect wax secretion the growth of tubular crystals. Biochim Biophys Acta 760:136–142

    Article  CAS  Google Scholar 

  • Duangphakdee O (2006) Biologically active compounds worker bees use to repel ants. Thesis, Chulalongkorn University, Bangkok

    Google Scholar 

  • Duangphakdee O, Koeniger N, Koeniger G, Wongsiri S, Deowanish S (2005a) Ant repellent resins of honeybees and stingless bees. Insect Soc 56:333–339

    Article  Google Scholar 

  • Duangphakdee O, Koeniger N, Koeniger G, Wongsiri S, Deowanish S (2005b) Reinforcing a barrier—a specific social defense of the dwarf honeybee (Apis florea) released by the weaver ant (Oecophylla smaragdina). Apidologie 36:505–512

    Article  Google Scholar 

  • Dujardin F (1850) Sur l’étude microscopique de la cire appliquée de cette substance chez animaux et les végétaux. C R Hebd Seances Acad Sci Ser D Sci Nat Paris 30:172–173

    Google Scholar 

  • Ehrenberg F (1849) Mitteilungen über Resultate bei Anwendung der chromatisch polarisierten Lichter für mikrorkopische Vcrhältnisse. Ber Verh Preurs Akad Berlin (Cited from Schmidt 1941)

    Google Scholar 

  • Ellis MB, Nicolson SW, Crewe RM, Dietemann V (2010) Brood comb as a humidity buffer in honeybee nests. Naturwissenschaften 97:429–433

    Article  CAS  PubMed  Google Scholar 

  • Flower NE, Kenchington W (1967) Studies on insect fibrous proteins: the larval silk of Apis, Bombus and Vespa (Hymenoptera: Aculeata). J R Microsc Soc 86:297–310

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Gaubert P (1910a) Sur les crisstaux mous. Bull Soc Fr Mineral Cristallogr 33:326–335

    Google Scholar 

  • Gaubert P (1910b) Sur les cristaux mous et sur la mesure de leurs indices de refraction. C R Hebd Seances Acad Sci Ser D Sci Nat Paris 151:532–534

    Google Scholar 

  • Hallam ND (1967) An electron microscope study of the leaf waxes of the genus Eucalyptus L’Heritier. Thesis, University of Melbourne, Melbourne. (Cited from Martin and Lindauer 1970)

    Google Scholar 

  • Halle F (1931) Röntgenographische Messungen homologer normaler Polymethylenverbindungen in orientiert kristallisierter Schicht. Kollaid-Z 61:77–97

    Article  Google Scholar 

  • Hepburn HR (1986) Honeybees and wax: an experimental natural history. Springer, Berlin

    Book  Google Scholar 

  • Hepburn HR (1998) Reciprocal interactions between honeybees and combs in the integration of some colony functions in Apis mellifera. Apidologie 29:47–66

    Article  Google Scholar 

  • Hepburn HR, Hepburn C (2011) Bibliography of the Asian species of honeybees. In: Hepburn HR, Radloff SE (eds) Honeybees of Asia. Springer, Berlin, pp 473–657

    Chapter  Google Scholar 

  • Hepburn HR, Kurstjens SP (1984) On the strength of propolis (bee glue). Naturwissenschaften 71:591–592

    Article  Google Scholar 

  • Hepburn HR, Kurstjens SP (1988) The combs of honeybees as composite materials. Apidologie 19:25–36

    Article  Google Scholar 

  • Hepburn HR, Whiffler LA (1991) Construction defects define pattern and method in comb-building by honeybees. Apidologie 22:381–388

    Article  Google Scholar 

  • Hepburn HR, Chandler HD, Davidoff MR (1979) Extensometric properties of insect fibroins: the green lacewing cross-β, honeybee α-helical and greater waxmoth parallel-β conformations. Insect Biochem 9:69–77

    Article  CAS  Google Scholar 

  • Hepburn HR, Armstrong E, Kurstjens SP (1983) The ductility of native beeswax is optimally related to honeybee colony temperature. S Afr J Sci 79:416–417

    Google Scholar 

  • Hepburn R, Duangphakdee O, Phiancharoen M, Radloff SE (2010) Comb wax salvage by the red dwarf honeybee, Apis florea. J Insect Behav 23:159–164

    Article  Google Scholar 

  • Huber F (1814) Nouvelles observations sur les abeilles. [English translation 1926] Dadant, Hamilton

    Google Scholar 

  • Jay SC (1964) The cocoon of the honeybee, Apis mellifera L. Can Ent 96:784–792

    Article  Google Scholar 

  • Jordan R (1962) Anomale Wachsplattchen. Bienenvater 63:299–301

    Google Scholar 

  • Kameda T (2005) 13C solid-state NMR analysis of heterogeneous structure of beeswax in native state. J Phys D Appl Phys 38:4313–4320

    Article  CAS  Google Scholar 

  • Kameda T, Tamada Y (2009) Variable-temperature 13C solid-state NMR study of the molecular structure of honeybee wax and silk. Int J Biol Macromol 44:64–69

    Article  CAS  PubMed  Google Scholar 

  • Kohlhaas R (1938) Röntgenographische Untersuchung von definierten Einkristallen des Palmitinssaure-Cetylesters. Z Krist 98:418–438

    CAS  Google Scholar 

  • Kratky E (1937) Die Orientierung der Moleküle des Bienenwachses und die Festigkeit der Waben. Naturwissenschaften 25:239

    Article  Google Scholar 

  • Kurstjens SP, Hepburn HR, Schoening FRL, Davidson BC (1985) The conversion of wax scales into comb wax by African honeybees. J Comp Physiol B156:95–102

    Article  Google Scholar 

  • Kurstjens SP, McClain E, Hepburn HR (1990) The proteins of beeswax. Naturwissenschaften 77:34–35

    Article  CAS  Google Scholar 

  • Lineburg B (1923) Conservation of wax by the bees. Am Bee J 63:615–616

    Google Scholar 

  • Lineburg B (1924) Comb-building. Am Bee J 64:271–272

    Google Scholar 

  • Locke M (1961) The cuticle and wax secretion in Calpodes ethlius (Lepidoptera: Hesperidae). Q J Microsc Sci 101:333–338

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lucas F, Rudall KM (1968) Extracellular fibrous proteins: the silks. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 26. Amsterdam, Elsevier, pp 475–558

    Google Scholar 

  • Marcucci MC (1995) Propolis: chemical composition, biological properties and therapeutic activity. Apidologie 26:83–99

    Google Scholar 

  • Nachtigall W, Kresling B (1992) Bauformen der Natur Teil I: Technische Biologie und Bionik von Knoten-Stab-Tragwerken. Naturwissenschaften 79:193–201

    Article  Google Scholar 

  • Nakamura J, Seeley TD (2006) The functional organization of resin work in honeybee colonies. Behav Ecol Sociobiol 60:339–349

    Article  Google Scholar 

  • Park OW (1946) Activities of honeybees. In: Grout RA (ed) The hive and the honeybee. Dadant Hamilton

    Google Scholar 

  • Phiancharoen M, Duangphakdee O, Hepburn HR (2011) Biology of nesting. In: Hepburn HR, Radloff SE (eds) Honeybees of Asia. Springer, Berlin, pp 109–132

    Chapter  Google Scholar 

  • Philipp PW (1928) Das Kittharz, seine Herkunft und Verwendung in Bienenhaushalt. Biol Zentralbl 48:705–714

    Google Scholar 

  • Philipp PW (1935) Neues vom Wachsschüppchen und der Wachszange. Rhein Bienen-Ztg 8:241–244

    Google Scholar 

  • Pirk CWW, Crous KL, Duangphakdee O, Radloff SE, Hepburn HR (2011) Economics of comb wax salvage by the red dwarf honeybee, Apis florea. J Comp Physiol 181:353–359

    Article  Google Scholar 

  • Puleo S (1991) Beeswax minor components: a new approach. Cosmet Toil 106:83–89

    CAS  Google Scholar 

  • Rudall KM (1962) Silk and other cocoon proteins. In: Florkin M, Mason HS (eds) Comparative biochemistry, vol IV. Academic Press, New York, pp 397–433

    Google Scholar 

  • Schmidt WJ (1924) Die Bausteine der Tierkörpers in polarisierten Lichte (Cited from Schmidt 1941)

    Google Scholar 

  • Schmidt WJ (1941) Polarisationsoptische Versuche mit Bienenwachs. Kolloid-Z 100:140–151

    Article  Google Scholar 

  • Schoening FRL (1980) The X-ray diffraction pattern and deformation texture of beeswax. S Afr J Sci 76:262–265

    CAS  Google Scholar 

  • Seeley TD, Seeley RH, Akratanakul P (1982) Colony defense strategies in the honeybees of Thailand. Ecol Monogr 52:43–63

    Article  Google Scholar 

  • Seifert M, Haslinger E (1989) Über die Inhaltsstoffe der Propolis, I. Liebigs Ann Chem 1989:1123–1126

    Article  Google Scholar 

  • Seifert M, Haslinger E (1991) Über die Inhaltsstoffe der Propolis, II. Liebigs Ann Chem 1991:93–97

    Article  Google Scholar 

  • Simone M, Evans J, Spivak M (2009) Resin collection and social immunity in honeybees. Evolution 63:3016–3022

    Article  CAS  PubMed  Google Scholar 

  • Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin used by honey bees. Apidologie 41:295–311

    Article  Google Scholar 

  • Simpson J (1961) Nest climate regulation in honey bee colonies. Science 133:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Sutherland TD, Weisman S, Walker AA, Mudie ST (2011) The coiled-coil silk of bees, ants, and hornets. Biopolymers 97:446–454

    Article  PubMed  Google Scholar 

  • Tomas-Barberan F, Garcia-Viguera C, Vit-Olivier P, Ferreres F (1993) Phytochemical evidence for the botanical origin of tropical propolis from Venezuela. Phytochemistry 34:191–196

    Article  CAS  Google Scholar 

  • Tulloch AP (1980) Beeswax—composition and analysis. Bee Wld 1:47–62

    Google Scholar 

  • Verlich AV (1930) Entwicklungsmechanische Studien an Bienenlarven. Z Wiss Zool 136:210–222

    Google Scholar 

  • von Laue M (1913) Röntgenstrahlinterferenzen. Physikal Zeit 14:1075–1079

    Google Scholar 

  • Warwicker JO (1960) Comparative studies of fibroins: II. The crystal structures of various fibroins. J Mol Biol 2:350–362

    Article  CAS  PubMed  Google Scholar 

  • Woog P, Yannaquis N (1935) Sur l’orientation des molélcules de la cire d’abeille. C R Hebd Seances Acad Sci Ser D Sci Nat Paris 201:1400–1402

    CAS  Google Scholar 

  • Woog P, Yannaquis N (1936a) Orientation des molécules de la cire d’abeille et répercussion sur la solidité der rayons. C R Hebd Seances Acad Sci Ser D Sci Nat Paris 202:76–78

    Google Scholar 

  • Woog P, Yannaquis N (1936b) Orientation des molécules de la cire des d’abeille. Répercussions sur la construction des rayons. Arch Phys Biol 13:134–149

    Google Scholar 

  • Zhang K, Duan H, Karihaloo BL, Wang J (2010) Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proc Natl Acad Sci 107:9502–9506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Hepburn .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hepburn, H.R., Pirk, C.W.W., Duangphakdee, O. (2014). Material Properties of Scale and Comb Wax. In: Honeybee Nests. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54328-9_14

Download citation

Publish with us

Policies and ethics