Skip to main content

Part of the book series: Graduate Texts in Physics ((GTP))

  • 4637 Accesses

Abstract

Sections 8.18.4 present the essentials on these topics. The reader should become well acquainted with these key tools in modern atomic physics – even though parts of it may seem somewhat strenuous at first sight. These concepts are essential also for molecular physics, as well as for a fundamental understanding of many properties of condensed matter and plasmas. This will be illustrated in Sects. 8.1.6, 8.1.7, 8.1.8, 8.2.10, 8.3 and 8.4.2 for a number of selected examples. In these presentations the reader will also find various references to modern developments in atomic physics which will brighten the study of these “classical” themes with currently hot topics – as e.g. “fast and slow” light in Sect. 8.4.4 or, in Sect. 8.5, with a first approach towards the rapidly developing modern research field of matter in intense and ultra-intense laser fields.

The interaction of atoms with external magnetic fields ( Zeeman effect) has already been introduced in Chaps.  1 and  2 , while radiation induced transitions where treated in Chaps.  4 and 5 . Here we generalize and deepen what is already known, and develop the tools for a quantitative description of atoms and molecules in external magnetic and electric fields. Thus, this chapter provides the essential basis for understanding this type of interaction also in a more complex environment and gives first examples of how to approach macroscopic properties of matter, such as magnetism and dielectric polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this depends on the precision of the measurement: for very weak electric fields and very high precision even the H atom levels of equal n are already split due to FS interaction.

  2. 2.

    Note that the SI unit of the polarization is \([ \alpha_{E} ] =\operatorname{A}^{2}\operatorname{s}^{4}\operatorname{kg}^{-1}=\operatorname{C} \operatorname{m}^{2}\operatorname{V}^{-1}\). In a.u. the polarization is \(\alpha_{E}^{(\mathrm{au})}=\alpha_{E}/(4\pi\epsilon_{0} a_{0}^{3})\). Often the esu system is still used in this context (see also Appendix A.3) with

    $$\alpha_{E}^{(\mathrm{esu})}=\frac{\alpha_{E}}{4\pi\epsilon_{0}}\quad \mbox{or}\quad \frac{\alpha_{E}^{(\mathrm{esu})}}{\operatorname{cm}^{3}}=\frac{10^{6}}{4\pi\epsilon_{0}\operatorname{m}^{3}}\alpha_{E} , $$

    indicating that \(\alpha_{E}^{(\mathrm{esu})}\) is usually given in \(\operatorname{cm}^{3}\). This scaling allows a direct comparison of the polarizability with the volume of the atoms that are polarized.

  3. 3.

    Note that this differs slightly from the scheme in (8.39) for the magnetization \(\mathfrak{M}\).

  4. 4.

    We use here the notation of Appendix I.2 where the relations to the full description are given – which in the present case would just be space consuming without leading to further insight.

  5. 5.

    Today, in addition a variety of artificial, specially designed “smart”, “meta” and “nano” materials exist, as well as photonic fibres, with extended regions of quite unusual optical properties.

  6. 6.

    One should take this with a grain of salt: Tunnelling is a quantum mechanical process, while in a classical picture the electron can only leave the atom “above-barrier”.

References

  • Ammosov, M. V., N. B. Delone and V. P. Krainov: 1986. ‘Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field’. Sov. Phys. JETP, 64, 1191–1194.

    Google Scholar 

  • Balcou, P. et al.: 2002. ‘High-order-harmonic generation: towards laser-induced phase-matching control and relativistic effects’. Appl. Phys. B, 74, 509–515.

    Article  ADS  Google Scholar 

  • Berger, M. J., J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker and K. Olsen: 2010. ‘XCOM: Photon cross sections database (version 1.5)’, NIST. http://physics.nist.gov/xcom, accessed: 8 Jan 2014.

  • Boguslavskiy, A. E., A. E. Boguslavskiy, J. Mikosch, A. Gijsbertsen, M. Spanner, S. Patchkovskii, N. Gador, M. J. J. Vrakking and A. Stolow: 2012. ‘The multielectron ionization dynamics underlying attosecond strong-field spectroscopies’. Science, 335, 1336–1340.

    Article  ADS  Google Scholar 

  • Born, M. and E. Wolf: 2006. Principles of Optics. Cambridge University Press, 7th (expanded) edn.

    Google Scholar 

  • Boyd, R., O. Hess, C. Denz and E. Paspalkalis: 2010. ‘Slow light’. J. Opt., 12, 100301.

    Article  ADS  Google Scholar 

  • Boyd, R. W. and D. J. Gauthier: 2002. ```Slow” and “fast” light’. In: ‘Progress in Optics’, vol. 43, 497–530. Amsterdam: Elsevier.

    Google Scholar 

  • Breit, G. and I. I. Rabi: 1931. ‘Measurement of nuclear spin’. Phys. Rev., 38, 2082–2083.

    Article  ADS  Google Scholar 

  • Buckingham, A. D.: 1967. ‘Permanent and induced molecular moments and long-range intermolecular forces’. Adv. Chem. Phys., 12, 107.

    Google Scholar 

  • Campbell, E. E. B., K. Hansen, K. Hoffmann, G. Korn, M. Tchaplyguine M. Wittmann and I. V. Hertel: 2000. ‘From above threshold ionization to statistical electron emission: the laser pulse-duration dependence of C60 photoelectron spectra’. Phys. Rev. Lett., 84, 2128–2131.

    Article  ADS  Google Scholar 

  • Chantler, C. T., K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore, S. A. Kotochigova and D. S. Zucker: 2005. ‘X-ray form factor, attenuation, and scattering tables (version 2.1)’, NIST. http://physics.nist.gov/ffast, accessed: 7 Jan 2014.

  • Corkum, P. B.: 1993. ‘Plasma perspective on strong-field multi-photon ionization’. Phys. Rev. Lett., 71, 1994–1997.

    Article  ADS  Google Scholar 

  • Hanson, A. L.: 1986. ‘The calculation of scattering cross-sections for polarized X-rays’. Nucl. Instrum. Methods A, 243, 583–598.

    Article  ADS  Google Scholar 

  • Hau, L. V., S. E. Harris, Z. Dutton and C. H. Behroozi: 1999. ‘Light speed reduction to 17 meters per second in an ultracold atomic gas’. Nature, 397, 594–598.

    Article  ADS  Google Scholar 

  • Hickstein, D. D. et al.: 2012. ‘Direct visualization of laser-driven electron multiple scattering and tunneling distance in strong-field ionization’. Phys. Rev. Lett., 109, 073004.

    Article  ADS  Google Scholar 

  • Hubbell, J. H., W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer and R. J. Howerton: 1975. ‘Atomic form factors, incoherent scattering functions, and photon scattering cross sections’. J. Phys. Chem. Ref. Data, 4, 471–538.

    Article  ADS  Google Scholar 

  • ISO 21348: 2007. ‘Space environment (natural and artificial) – process for determining solar irradiances’. International Organization for Standardization, Geneva, Switzerland.

    Google Scholar 

  • Kane, P. P., L. Kissel, R. H. Pratt and S. C. Roy: 1986. ‘Elastic-scattering of gamma-rays and X-rays by atoms’. Phys. Rep., 140, 75–159.

    Article  ADS  Google Scholar 

  • Keldysh, L. V.: 1965. ‘Ionization in the field of a strong electromagnetic wave’. Sov. Phys. JETP, 20, 1307.

    MathSciNet  Google Scholar 

  • Krausz, F. and M. Ivanov: 2009. ‘Attosecond physics’. Rev. Mod. Phys., 81, 163–234.

    Article  ADS  Google Scholar 

  • Larochelle, S., A. Talebpour and S. L. Chin: 1998. ‘Non-sequential multiple ionization of rare gas atoms in a ti:sapphire laser field’. J. Phys. B, At. Mol. Opt. Phys., 31, 1201–1214.

    Article  ADS  Google Scholar 

  • Lorentz, H. A. and P. Zeeman: 1902. ‘The Nobel prize in physics: in recognition of the extraordinary service they rendered by their researches into the influence of magnetism upon radiation phenomena’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1902/.

  • Menendez, J. M., I. Martin and A. M. Velasco: 2005. ‘The stark effect in atomic Rydberg states through a quantum defect approach’. Int. J. Quant. Chem., 102, 956–960.

    Article  ADS  Google Scholar 

  • Paulus, G. G., W. Nicklich, H. L. Xu, P. Lambropoulos and H. Walther: 1994. ‘Plateau in above-threshold ionization spectra’. Phys. Rev. Lett., 72, 2851–2854.

    Article  ADS  Google Scholar 

  • Polyanskiy, M.: 2012. ‘RefractiveIndex.Info’, MediaWiki. http://refractiveindex.info, accessed: 10 Jan 2014.

  • Sansone, G., L. Poletto and M. Nisoli: 2011. ‘High-energy attosecond light sources’. Nat. Photonics, 5, 656–664.

    Article  ADS  Google Scholar 

  • Sansone, G. et al.: 2010. ‘Electron localization following attosecond molecular photoionization’. Nature, 465, 763–767.

    Article  ADS  Google Scholar 

  • Stark, J.: 1919. ‘The Nobel prize in physics: for his discovery of the Doppler effect in canal rays and the splitting of spectral lines in electric fields’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1919/.

  • Sven Gato Redsun: 2004. ‘3j6j9j-symbol java calculator’, Sven Gato Redsun. http://www.svengato.com/, accessed: 8 Jan 2014.

  • Tzallas, P., D. Charalambidis, N. A. Papadogiannis, K. Witte and G. D. Tsakiris: 2003. ‘Direct observation of attosecond light bunching’. Nature, 426, 267–271.

    Article  ADS  Google Scholar 

  • Vrakking, M. J. J. and T. Elsaesser: 2012. ‘X-ray photonics: X-rays inspire electron movies’. Nat. Photonics, 6, 645–647.

    Article  ADS  Google Scholar 

  • Walker, B., B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer and K. C. Kulander: 1994. ‘Precision-measurement of strong-field double-ionization of helium’. Phys. Rev. Lett., 73, 1227–1230.

    Article  ADS  Google Scholar 

  • Watson, J. B., A. Sanpera, D. G. Lappas, P. L. Knight and K. Burnett: 1997. ‘Nonsequential double ionization of helium’. Phys. Rev. Lett., 78, 1884–1887.

    Article  ADS  Google Scholar 

  • Zimmerman, M. L., M. G. Littman, M. M. Kash and D. Kleppner: 1979. ‘Stark structure of the Rydberg states of alkali-metal atoms’. Phys. Rev. A, 20, 2251–2275.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Acronyms and Terminology

ADK:

Ammosov, Delone, and Krainov’, (1986) theory for strong field ionization (see e.g. Sect. 8.30).

AMO:

‘Atomic, molecular and optical’, physics.

ATI:

‘Above-threshold ionization’, in multi-photon ionization, if more photons are absorbed than necessary for ionization.

a.u.:

‘atomic units’, see Sect. 2.6.2.

DC:

‘Direct current’, unidirectional electric voltage and current.

E1:

‘Electric dipole’, transitions induced by the interaction of an electric dipole with the electric field component of electromagnetic radiation.

EPR:

‘Electron paramagnetic resonance’, spectroscopy, also called electron spin resonance ESR (see Sect. 9.5.2).

esu:

‘electrostatic units’, old system of unities, equivalent to the Gauss system for electric quantities (see Appendix A.3).

FS:

‘Fine structure’, splitting of atomic and molecular energy levels due to spin orbit interaction and other relativistic effects (Chap. 6).

good quantum number:

‘Quantum number for eigenvalues of such observables that may be measured simultaneously with the Hamilton operator (see Sect. 2.6.5)’.

HHG:

‘High harmonic generation’, in intense laser fields.

HV:

‘High voltage’, electric voltages typically higher than \(1000\operatorname{V}\).

IR:

‘Infrared’, spectral range of electromagnetic radiation. Wavelengths between \(760\operatorname{nm}\) and \(1\operatorname{mm}\) according to ISO 21348 (2007).

LHC:

‘Left hand circularly’, polarized light, also σ + light.

MPI:

‘Multi-photon ionization’, ionization of atoms or molecules by simultaneous absorption of several photons.

NIST:

‘National institute of standards and technology’, located at Gaithersburg (MD) and Boulder (CO), USA. http://www.nist.gov/index.html.

NMR:

‘Nuclear magnetic resonance’, spectroscopy, a rather universal spectroscopic method for identifying molecules (see Sect. 9.5.3).

QED:

‘Quantum electrodynamics’, combines quantum theory with classical electrodynamics and special relativity. It gives a complete description of light-matter interaction.

RHC:

‘Right hand circularly’, polarized light, also σ light.

SI:

‘Système international d’unités’, international system of units (m, kg, s, A, K, mol, cd), for details see the website of the Bureau International des Poids et Mésure http://www.bipm.org/en/si/ or NIST http://physics.nist.gov/cuu/Units/index.html.

SVE:

‘Slowly varying envelope’, approximation for electromagnetic waves (see Sect. 1.2.1, specifically Eq. (1.38), Vol. 2).

Ti:Sapph:

‘Titanium-sapphire laser’, the ‘workhorse’ of ultra fast laser science.

UV:

‘Ultraviolet’, spectral range of electromagnetic radiation. Wavelengths between \(100\operatorname{nm}\) and \(400\operatorname{nm}\) according to ISO 21348 (2007).

VIS:

‘Visible’, spectral range of electromagnetic radiation. Wavelengths between \(380\operatorname{nm}\) and \(760\operatorname{nm}\) according to ISO 21348 (2007).

VUV:

‘Vacuum ultraviolet’, spectral range of electromagnetic radiation. part of the UV spectral range. Wavelengths between \(10\operatorname{nm}\) and \(200\operatorname{nm}\) according to ISO 21348 (2007).

XUV:

‘Soft X-ray (sometimes also extreme UV)’, spectral wavelength range between \(0.1\operatorname{nm}\) and \(10\operatorname{nm}\) according to ISO 21348 (2007), sometimes up to \(40\operatorname{nm}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hertel, I.V., Schulz, CP. (2015). Atoms in External Fields. In: Atoms, Molecules and Optical Physics 1. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54322-7_8

Download citation

Publish with us

Policies and ethics