Skip to main content

Inelastic Collisions – A First Overview

  • Chapter
Atoms, Molecules and Optical Physics 2

Part of the book series: Graduate Texts in Physics ((GTP))

  • 5290 Accesses

Abstract

We introduce some characteristic questions about inelastic and reactive collisions and approaches to answer them for several important examples. We start in Sect. 7.1 with very simple models. The general trends for excitation processes as a function of the relative kinetic energy are presented in Sect. 7.2. Specifically, in Sect. 7.2.7 we focus on the threshold region. In Sect. 7.3 we introduce multichannel theory, and discuss the alternative adiabatic and diabatic viewpoints. In Sect. 7.4 we extend the semiclassical methods already employed in the elastic case. In Sect. 7.5 we make a short excursions into the world of collision processes with highly charged ions. Finally, we address reactive scattering processes in Sect. 7.6.

In the previous chapter we have introduced potential scattering. Even though the concepts discussed there describe elastic heavy particle scattering very well (and in some cases even elastic electron scattering), we had to exclude so far completely the very important field of atomic and molecular excitation by collisions, as well as reactions: quite generally, atomic collisions are many body problems, and whenever changes of the internal states of the collision partners are possible, one has to account for these degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Excitation cross sections as a function of collision energy are called excitation functions.

  2. 2.

    Often the computation can be dramatically simplified by distinguishing between active valence electrons and the passive core electrons and by using correspondingly pseudopotentials rather than summing over all \(\mathcal{N}\). The generalization to molecules as targets is for this ansatz without problems, however, when solving the problem in detail, much more complicated.

  3. 3.

    The antisymmetrization necessary in the case of electron scattering is, however, not yet included and will have to be added in Sect. 8.1.

  4. 4.

    One finds slightly different notations in the literature, which differ by i or i/ħ in the definition of the coupling element G jj.

  5. 5.

    As in the elastic case, the classical deflection angle Θ has a well defined sign, in contrast to the scattering angle θ.

  6. 6.

    We recall that we use (a vector) and (a number) for the nuclear angular momentum and its quantum number, respectively (to be distinguished from the electronic orbital angular momentum L).

  7. 7.

    For simplicity of the derivation we consider here only radial coupling, for which the Landau-Zener model is typically used. Allan and Korsch (1985) have shown, however, that the formalism may also be applied to rotational coupling.

  8. 8.

    Inversely, the probability to remain in the initial state during the overall process is \(w_{ba}w_{ba}+ ( 1-w_{ba} ) ( 1-w_{ba} ) =1-w_{ba}^{\mathrm{tot}}\).

  9. 9.

    Crossing (D) is important for the dependence of the process on polarization – which we cannot describe here.

  10. 10.

    This is a consequence of the rotation of the internuclear axis during the collision (rotational coupling). We note here in passing, that this splitting corresponds directly to lambda-type doubling in molecular spectroscopy (Sect. 3.6.6), a splitting of energy levels into Λ + and Λ states for higher rotational quantum numbers due to the coupling of the electronic angular momentum Λ with the nuclear rotation N.

  11. 11.

    W pot is the sum of all ionization potentials W I (q′) for q′≤q.

  12. 12.

    The scenarios sketched in Fig. 7.27 correspond to just this reaction for q=18 (i.e. for the naked Ar nucleus). Not completely correct but illustrative we have shown in these schematics also the reduction of the states at R>R th – according to (7.86) and (7.88).

References

  • Allan, R. J. and H. J. Korsch: 1985. ‘2-state curve crossing processes involving rotational coupling in the \(\mathrm{Na}_{2}^{+}\) molecular ion’. Z. Phys. A, 320, 191–205.

    Article  ADS  Google Scholar 

  • Bähring, A., I. V. Hertel, E. Meyer, W. Meyer, N. Spies and H. Schmidt: 1984. ‘Excitation of laser state-prepared Na*(3p) to Na*(3d) in low-energy collisions with Na+: Experiment and calculations of the potential curves of \(\mathrm{Na}_{2}^{+}\)’. J. Phys. B, At. Mol. Phys., 17, 2859–2873.

    Article  ADS  Google Scholar 

  • Bandrauk, A. D. and M. S. Child: 1970. ‘Analytic predissociation linewidths from scattering theory’. Mol. Phys., 19, 95–111.

    Article  ADS  Google Scholar 

  • Barat, M., P. Roncin, L. Guillemot, M. N. Gaboriaud and H. Laurent: 1990. ‘Single and double electron-capture by C4+ ions colliding with helium target’. J. Phys. B, At. Mol. Phys., 23, 2811–2818.

    Article  ADS  Google Scholar 

  • Bartschat, K.: 1998. ‘Electron-impact excitation of helium from the 1 1S and 2 3S states’. J. Phys. B, At. Mol. Phys., 31, L469–L476.

    Article  ADS  Google Scholar 

  • Bommels, J., K. Franz, T. H. Hoffmann, A. Gopalan, O. Zatsarinny, K. Bartschat, M. W. Ruf and H. Hotop: 2005. ‘Low-lying resonances in electron-neon scattering: Measurements at 4-meV resolution and comparison with theory’. Phys. Rev. A, 71.

    Google Scholar 

  • Bostock, C. J.: 2011. ‘The fully relativistic implementation of the convergent close-coupling method’. J. Phys. B, At. Mol. Phys., 44, 083001.

    Article  ADS  Google Scholar 

  • Bostock, C. J., D. V. Fursa and I. Bray: 2010. ‘Relativistic convergent close-coupling method applied to electron scattering from mercury’. Phys. Rev. A, 82, 022713.

    Article  ADS  Google Scholar 

  • Buckman, S. J., P. Hammond, G. C. King and F. H. Read: 1983. ‘High-resolution electron-impact excitation-functions of metastable states of neon, argon, krypton and xenon’. J. Phys. B, At. Mol. Phys., 16, 4219–4236.

    Article  ADS  Google Scholar 

  • Buckman, S. J. and J. P. Sullivan: 2006. ‘Benchmark measurements and theory for electron(positron)-molecule(atom) scattering’. Nucl. Instrum. Methods B, 247, 5–12.

    Article  ADS  Google Scholar 

  • Campbell, E. E. B., H. Schmidt and I. V. Hertel: 1988. ‘Symmetry and angular momentum in collisions with laser excited polarized atoms’. Adv. Chem. Phys., 72, 37.

    Google Scholar 

  • Depaola, B. D., R. Morgenstern and N. Andersen: 2008. ‘Motrims: magneto-optical trap recoil ion momentum spectroscopy’. In: ‘Advances in Atomic, Molecular, and Optical Physic’, vol. 55, 139–189. Amsterdam: Elsevier.

    Google Scholar 

  • Dressler, R. A. et al.: 2006. ‘The study of state-selected ion-molecule reactions using the vacuum ultraviolet pulsed field ionization-photoion technique’. J. Chem. Phys., 125, 132306.

    Article  ADS  Google Scholar 

  • Dubois, A., S. E. Nielsen and J. P. Hansen: 1993. ‘State selectivity in H+-Na(3s/3p) collisions – Differential cross-sections, alignment and orientation effects for electron-capture’. J. Phys. B, At. Mol. Phys., 26, 705–721.

    Article  ADS  Google Scholar 

  • Franck, J. and G. Hertz: 1914. ‘Über Zusammenstöße zwischen Elektronen und Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselben.’ Verh. Dtsch. Phys. Ges., 16, 457–467.

    Google Scholar 

  • Franck, J. and G. L. Hertz: 1925. ‘The Nobel prize in physics: for their discovery of the laws governing the impact of an electron upon an atom’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1925/.

  • Fursa, D. V. and I. Bray: 1995. ‘Calculation of electron-helium scattering’. Phys. Rev. A, 52, 1279–1297.

    Article  ADS  Google Scholar 

  • Gopalan, A., J. Bommels, S. Gotte, A. Landwehr, K. Franz, M. W. Ruf, H. Hotop and K. Bartschat: 2003. ‘A novel electron scattering apparatus combining a laser photoelectron source and a triply differentially pumped supersonic beam target: characterization and results for the He(1s 2s2) resonance’. Eur. Phys. J. D, 22, 17–29.

    Article  ADS  Google Scholar 

  • Grieser, M. et al.: 2012. ‘Storage ring at HIE-ISOLDE technical design report’. Eur. Phys. J. Spec. Top., 207, 1–117.

    Article  Google Scholar 

  • Hanne, G. F.: 1988. ‘What really happens in the Franck-Hertz experiment with mercury?’ Am. J. Phys., 56, 696–700.

    Article  ADS  Google Scholar 

  • Herschbach, D. R.: 1987. ‘Molecular-dynamics of elementary chemical-reactions (Nobel lecture)’. Angew. Chem., Int. Ed., 26, 1221–1243.

    Article  Google Scholar 

  • Herschbach, D. R., Y. T. Lee and J. C. Polanyi: 1986. ‘The Nobel prize in chemistry: for their contributions concerning the dynamics of chemical elementary processes’, Stockholm. http://nobelprize.org/nobel_prizes/chemistry/laureates/1986/.

  • Hoffmann, T. H., M. W. Ruf, H. Hotop, O. Zatsarinny, K. Bartschat and M. Allan: 2010. ‘New light on the Kr-(4p(5)5s(2)) Feshbach resonances: high-resolution electron scattering experiments and B-spline R-matrix calculations’. J. Phys. B, At. Mol. Phys., 43, 085206.

    Article  ADS  Google Scholar 

  • Hoshino, M. et al.: 2007. ‘Experimental and theoretical study of double-electron capture in collisions of slow C4+(1s 21S) with He(1s 21S)’. Phys. Rev. A, 75.

    Google Scholar 

  • Hotop, H., M. W. Ruf, M. Allan and I. Fabrikant: 2003. ‘Resonance and threshold phenomena in low-energy electron collisions with molecules and clusters’. In: ‘Advances in Atomic Molecular, and Optical Physics’, vol. 49, 85–216. Amsterdam: Elsevier, Academic Press.

    Google Scholar 

  • Kime, L. et al.: 2013. ‘High-flux monochromatic ion and electron beams based on laser-cooled atoms’. Phys. Rev. A, 88.

    Google Scholar 

  • Kimura, M. and N. F. Lane: 1989. ‘The low-energy, heavy-particle collisions – a close coupling treatment’. In: ‘Advances in Atomic Molecular and Optical Physics’, vol. 26, 79–160. New York: Academic Press.

    Google Scholar 

  • Kitajima, M. et al.: 2012. ‘Ultra-low-energy electron scattering cross section measurements of Ar, Kr and Xe employing the threshold photoelectron source’. Eur. Phys. J. D, 66, 130.

    Article  ADS  Google Scholar 

  • Knoop, S. et al.: 2008. ‘Single-electron capture in keV Ar15+⋯18++He collisions’. J. Phys. B, At. Mol. Phys., 41, 195203.

    Article  ADS  Google Scholar 

  • Koch, L., T. Heindorff and E. Reichert: 1984. ‘Resonances in the electron-impact excitation of metastable states of mercury’. Z. Phys. A, 316, 127–130.

    Article  ADS  Google Scholar 

  • Landau, L.: 1932. ‘Zur Theorie der Energieübertragung. II.’ Phys. Z. Sowjetunion, 2, 46–51.

    Google Scholar 

  • Magnier, S. and F. Masnou-Seeuws: 1996. ‘Model potential calculations for the excited and Rydberg states of the \(\mathrm{Na}_{2}^{+}\) molecular ion: Potential curves, dipole and quadrupole transition moments’. Mol. Phys., 89, 711–735.

    Article  ADS  Google Scholar 

  • Merabet, H. et al.: 2001. ‘Cross sections and collision dynamics of the excitation of (1snp) 1P0 levels of helium, n=2–5, by intermediate- and high-velocity electron, proton, and molecular-ion (\(\mathrm{H}_{2}^{+}\) and \(\mathrm{H}_{3}^{+}\)) impact’. Phys. Rev. A, 64, 012712.

    Article  ADS  Google Scholar 

  • Mikosch, J., U. Frühling, S. Trippel, D. Schwalm, M. Weidemüller and R. Wester: 2006. ‘Velocity map imaging of ion-molecule reactive scattering: The Ar++N2 charge transfer reaction’. Phys. Chem. Chem. Phys., 8, 2990–2999.

    Article  Google Scholar 

  • Mikosch, J. et al.: 2008. ‘Imaging nucleophilic substitution dynamics’. Science, 319, 183–186.

    Article  ADS  Google Scholar 

  • Morgenstern, R.: 2009. ‘Viewgraphs on the above barrier model’. Private communication, for which we wish to express our sincere thanks.

    Google Scholar 

  • Morgenstern, R. and H. Schmidt-Böcking: 2009. We grateful acknowledge detailed suggestions on collisions with highly charged ions.

    Google Scholar 

  • Newman, D. S., M. Zubek and G. C. King: 1985. ‘A study of resonance structure in mercury using metastable excitation by electron-impact with high-resolution’. J. Phys. B, At. Mol. Phys., 18, 985–998.

    Article  ADS  Google Scholar 

  • Niehaus, A.: 1986. ‘A classical model for multiple-electron capture in slow collisions of highly charged ions with atoms’. J. Phys. B, At. Mol. Phys., 19, 2925–2937.

    Article  ADS  Google Scholar 

  • NIFS and ORNL: 2007. ‘Atomic & molecular numerical databases’, NIFS, National Institute for Fusion Science, Japan. http://dbshino.nifs.ac.jp/, accessed: 9 Jan 2014.

  • Pichl, L., R. Suzuki, M. Kimura, Y. Li, R. J. Buenker, M. Hoshino and Y. Yamazaki: 2006. ‘Angular dependence of double electron capture in collisions of C4+ with He – Stueckelberg oscillations in the differential cross-section for capture into C2+(1s 22s 21S)’. Eur. Phys. J. D, 38, 59–64.

    Article  ADS  Google Scholar 

  • Rapior, G., K. Sengstock and V. Baev: 2006. ‘New features of the Franck-Hertz experiment’. Am. J. Phys., 74, 423–428.

    Article  ADS  Google Scholar 

  • Rau, A. R. P.: 1971. ‘2 electrons in a Coulomb potential – double-continuum wave functions and threshold law for electron-atom ionization’. Phys. Rev. A, 4, 207–220.

    Article  ADS  Google Scholar 

  • Sadeghpour, H. R., J. L. Bohn, M. J. Cavagnero, B. D. Esry, I. I. Fabrikant, J. H. Macek and A. R. P. Rau: 2000. ‘Collisions near threshold in atomic and molecular physics’. J. Phys. B, At. Mol. Phys., 33, R93–R140.

    Article  ADS  Google Scholar 

  • Sigeneger, F., R. Winkler and R. E. Robson: 2003. ‘What really happens with the electron gas in the famous Franck-Hertz experiment?’. Contrib. Plasma Phys., 43, 178–197.

    Article  ADS  Google Scholar 

  • Smith, F. T.: 1969. ‘Diabatic and adiabatic representations for atomic collision problems’. Phys. Rev., 179, 111–123.

    Article  ADS  Google Scholar 

  • Stückelberg, E. C. G.: 1932. ‘Theorie der unelastischen Stösse zwischen Atomen’. Helv. Phys. Acta, 5, 369.

    Google Scholar 

  • Szmytkowski, C., K. Maciag and G. Karwasz: 1996. ‘Absolute electron-scattering total cross section measurements for noble gas atoms and diatomic molecules’. Phys. Scr., 54, 271–280.

    Article  ADS  Google Scholar 

  • Ullrich, J., R. Moshammer, A. Dorn, R. Dörner, L. P. H. Schmidt and H. Schmidt-Böcking: 2003. ‘Recoil-ion and electron momentum spectroscopy: reaction-microscopes’. Rep. Prog. Phys., 66, 1463–1545.

    Article  ADS  Google Scholar 

  • Vinodkumar, M., C. Limbachiya, B. Antony and K. N. Joshipura: 2007. ‘Calculations of elastic, ionization and total cross sections for inert gases upon electron impact: threshold to 2 keV’. J. Phys. B, At. Mol. Phys., 40, 3259–3271.

    Article  ADS  Google Scholar 

  • Wannier, G. H.: 1953. ‘The threshold law for single ionization of atoms or ions by electrons’. Phys. Rev., 90, 817–825.

    Article  MATH  ADS  Google Scholar 

  • Wigner, E. P.: 1948. ‘On the behavior of cross sections near thresholds’. Phys. Rev., 73, 1002–1009.

    Article  MATH  ADS  Google Scholar 

  • Winter, H. and F. Aumayr: 1999. ‘Hollow atoms’. J. Phys. B, At. Mol. Phys., 32, R39–R65.

    Article  ADS  Google Scholar 

  • Wittig, C.: 2005. ‘The Landau-Zener formula’. J. Phys. Chem. B, 109, 8428–8430.

    Article  Google Scholar 

  • Zatsarinny, O. and K. Bartschat: 2004. ‘B-spline Breit-Pauli R-matrix calculations for electron collisions with neon atoms’. J. Phys. B, At. Mol. Phys., 37, 2173–2189.

    Article  ADS  Google Scholar 

  • Zener, C.: 1932. ‘Non-adiabatic crossing of energy levels’. Proc. R. Soc. Lond. A, 137, 696–702.

    Article  ADS  Google Scholar 

  • Zewail, A. H.: 1999. ‘The Nobel prize in chemistry: for his studies of the transition states of chemical reactions using femtosecond spectroscopy’, Stockholm. http://nobelprize.org/nobel_prizes/chemistry/laureates/1999/.

Download references

Author information

Authors and Affiliations

Authors

Acronyms and Terminology

a.u.:

‘atomic units’, see Sect. 2.6.2 in Vol. 1.

BO:

Born Oppenheimer’, approximation, the basis when solving the Schrödinger equation for molecules (see Sect. 3.2).

CC:

‘Close-coupling’, calculations, computation of scattering cross sections by solving (part of) the coupled integro-differential equations (see Sect. 8.1.1).

CCC:

‘Convergent close-coupling’, calculations, special solutions of the coupled integro-differential equations for collisions (see Sect. 8.1).

CCD:

‘Charge coupled device’, semiconductor device typically used for digital imaging (e.g. in electronic cameras).

CM:

‘Centre of mass’, coordinate system (or frame) (see Sect. 6.2.2).

COLTRIMS:

‘Cold target recoil ion momentum spectroscopy’, see Appendix B.4.

CW:

‘Continuous wave’, (as opposed to pulsed) light beam, laser radiation etc.

DCS:

‘Differential cross section’, see Sect. 6.2.1.

E1:

‘Electric dipole’, transitions induced by the interaction of an electric dipole with the electric field component of electromagnetic radiation.

EBIS:

‘Electron beam ion source’, source for highly charged ion beams see Sect. 7.5.

EBIT:

‘Electron beam ion trap’, source for highly charged ion beams see Sect. 7.5.

ECR:

‘Electron cyclotron resonance’, used e.g. in sources for highly charged ion beams see Sect. 7.5.

FC:

Franck-Condon’, introduced an important approximation for optical transition between electronic states (see Sect. 5.4.1).

FBA:

‘First order Born approximation’, approximation describing continuum wave functions by plane waves; used in collision theory and photoionization (see Sects. 6.6 and 5.5.2, Vol. 1, respectively).

HCI:

‘Highly charged ions’, see Sect. 7.5.

HF:

Hartree-Fock’, method (approximation) for solving a multi-electron Schrödinger equation, including exchange interaction.

HOMO:

‘Highest occupied molecular orbital’.

JWKB:

Jeffreys-Wentzel-Kramers-Brillouin’, semiclassical method to determine scattering phases.

MCP:

‘Multi channel plate’, electron multiplier with many amplifying elements.

MD:

‘Molecular dynamics’, classical trajectory computations for molecular systems.

MP2:

Møller-Plesset correction of 2nd order’, perturbative approach to correct HF energies for contributions from non-spherical repulsive potentials.

ODE:

‘Ordinary differential equation’.

QED:

‘Quantum electrodynamics’, combines quantum theory with classical electrodynamics and special relativity. It gives a complete description of light-matter interaction.

RCCC:

‘Relativistic convergent close-coupling’, relativistic version of CCC calculations (including spin orbit interaction).

RMPS:

‘R-matrix with pseudo-states method’, advanced quantum mechanical theory for electron scattering.

SEC:

‘Single electron capture’, see Sect. 7.5.1.

VMI:

‘Velocity map imaging’, experimental method for registration (and visualization) of particle velocities as a function of their angular distribution (see Appendix B).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hertel, I.V., Schulz, CP. (2015). Inelastic Collisions – A First Overview. In: Atoms, Molecules and Optical Physics 2. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54313-5_7

Download citation

Publish with us

Policies and ethics