Skip to main content

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

After a brief introduction in Sect. 5.1 we shall expand our knowledge about rotational (microwave) and vibrational (infrared) spectroscopy in Sects. 5.2 and 5.3, respectively, and supplement it with short excursions into infrared Fourier transform spectroscopy (FTIR) and IR action spectroscopy. In Sect. 5.4 we turn to the spectroscopy of electronic transitions (VIS, UV and VUV) and present a few state-of-the-art methods of modern molecular spectroscopy. In Sect. 5.6 basics of Raman spectroscopy will be developed – a very important spectroscopic art, which may be said to reside in between electronic and vibrational spectroscopy. In Sect. 5.5.4 we illustrate the astonishing capabilities of today’s high resolution spectroscopy with sophisticated methods, as applied to larger, even biologically relevant molecules. Finally, in Sect. 5.8 we introduce the important field of photoelectron spectroscopy.

In Chaps.  3 and  4 we have treated structure and properties of diatomic and polyatomic molecules, together with some basics on rotational and vibrational spectra. Now we shall deepen this first acquaintance and introduce also electronic transitions in molecules. Instrumental to modern spectroscopy are narrow band lasers and synchrotron radiation, covering together with microwave, sub-millimetre and radio frequency sources a spectral range of more than ten decades, ready for any conceivable applications in molecular spectroscopy – for which we shall present selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that these stick-spectra just communicates molecular line strengths. They do not yet represent absorption spectra (see Sect. 5.2.4 in Vol. 1).

  2. 2.

    Strictly mathematical the following equation is not completely correct: since we back-transform only the real part of the inverse FT, negative frequencies arise … which have to be ignored.

  3. 3.

    We continue to use the spectroscopic notation according to Herzberg as introduced in Chap. 3: lower state double primed ′′, upper state single ′.

  4. 4.

    Obviously, that is not necessarily the case, since a change in electronic structure may also change the symmetry of the system.

  5. 5.

    One has to keep in mind that during the IVR process in an isolated molecule vibrational energy does of course not get lost – as one might infer from the display of the energy terms in Fig. 5.15. Energy (except in optical emission) is just redistributed among the many other vibrational degrees of freedom within the molecule. A flow of energy back into the ‘representative nuclear coordinate’ is – for statistical reasons – the less probable the larger the molecule.

  6. 6.

    In the literature one often finds J for the rotational quantum number, instead of N.

  7. 7.

    Thus the coupling of angular momenta in I2 is most appropriately described as Hund’s case (c), see Sect. 3.6.4. The often used classification by singlet and triplet looses its validity due to the strong spin-orbit splitting. Otherwise the transitions studied here would all be forbidden intercombination lines.

  8. 8.

    As done by Hartmut Hotop (2008) who made these data available for us.

  9. 9.

    We note that the pseudorotation does not occur on a perfect circle. This would only be the case if the potential minima and the saddlepoints would both lie on the same circle.

  10. 10.

    We emphasize that (5.30) holds for Stokes and anti-Stokes lines, since i and f in ħω fi refer here to the initial and final molecular states, respectively. In contrast, in the Jablonsky diagram Fig. 5.32 the indices b and a refer to upper and lower Raman levels, respectively.

  11. 11.

    One easily verifies this by looking up the respective Clebsch-Gordan coefficients.

  12. 12.

    With the exception of pure emission spectroscopy where no incident light is involved.

  13. 13.

    They are measured in units \([ \chi^{(k)} ] =\operatorname{m}^{k-1}\operatorname{V}^{-k+1}\), i.e. only χ (1) is dimensionless. Note that (5.42) is an abbreviation. Explicitly, the components of the polarization vector are

    $$\mathfrak{P}_{i}=\varepsilon_{0} \biggl( \sum _{j}\chi _{ij}^{(1)}E_{j}+ \sum_{jk}\chi_{ijk}^{(2)}E_{j}E_{k}+ \sum_{jk\ell}\chi_{ijk\ell}^{(3)} E_{j}E_{k}E_{\ell}+\cdots \biggr) $$

    for i=x,y,z. Each index in the sums runs over x, y, and z.

  14. 14.

    Unfortunately he still used the old Gaussian esu, strangely in combination with the unit \(\operatorname{V}\). We use here of course SI units.

  15. 15.

    Equation (5.80), Vol. 1 holds for pure, linearly polarized light. If the light is not fully polarized one has to correct for the finite degree of linear polarization \(\mathcal{P}_{12}\) of the source according to (1.101). \(\vert \mathcal{P}_{12}\vert \leq1\) is usually calibrated by the well known angular distributions from rare gases. The observed electron angular distribution is then

    $$ I(\gamma)\propto \bigl[ 1+\beta\mathcal{P}_{12} \bigl( 3 \cos^{2}\gamma-1 \bigr) /2 \bigr] , $$
    (5.48)

    as one may derive using the theory of measurement sketched in Chap. 9.

  16. 16.

    Often the binding energy of the emitted electron W B (γ′′v′′N′′)=−(W I W γ′′v′′N′′) is communicated. The literature is somewhat ambiguous about the sign. If one refers to the free electron after emission, the electron binding energy is of course negative.

  17. 17.

    We have to use the dynamic relative permittivity (dielectric constant) here, which is much smaller than the static one (ε stat≃80).

  18. 18.

    There is, however, one key difference: anions do not come out of the bottle and have to be specifically prepared, and – as they carry a charge – may also be mass selected prior to the interaction with photons. Specifically for the study of clusters this is an essential advantage compared to neutral cluster beams. They usually have a broad distribution of cluster sizes, and mass selective detection after the interaction process does not really help, since usually very difficult to discriminate against fragments from larger clusters.

  19. 19.

    In these storage devices, originally designed for nuclear physics experiments, events are added up and stored according to their pulse height.

References

  • Abo-Riziq, A., B. Crews, L. Grace and M. S. de Vries: 2005. ‘Microhydration of guanine base pairs’. J. Am. Chem. Soc., 127, 2374–2375.

    Google Scholar 

  • Albrecht, A. C.: 1961. ‘Theory of Raman intensities’. J. Chem. Phys., 34, 1476–1484.

    ADS  Google Scholar 

  • Andersen, U., H. Dreizler, J. U. Grabow and W. Stahl: 1990. ‘An automatic molecular-beam microwave Fourier-transform spectrometer’. Rev. Sci. Instrum., 61, 3694–3699.

    ADS  Google Scholar 

  • Baer, T.: 1979. ‘State selection by photoion-photoelectron coincidence’. In: M. Bowers, ed., ‘Gas Phase Ion Chemistry’, vol. 1, Chap. 5. New York: Academic Press.

    Google Scholar 

  • Baer, T., W. B. Peatman and E. W. Schlag: 1969. ‘Photoionization resonance studies with a steradiancy analyzer. II. The photoionization of CH3I’. Chem. Phys. Lett., 4, 243–247.

    ADS  Google Scholar 

  • Baer, T., S. H. Walker, N. S. Shuman and A. Bodi: 2012. ‘One- and two-dimensional translational energy distributions in the iodine-loss dissociation of 1,2-\(\mathrm{C}_{2}\mathrm {H}_{4}\mathrm{I}_{2}^{+}\) and 1,3-\(\mathrm{C}_{3}\mathrm{H}_{6}\mathrm{I}_{2}^{+}\): What does this mean?’ J. Phys. Chem. A, 116, 2833–2844.

    Google Scholar 

  • Baer, T., B. Sztaray, J. P. Kercher, A. F. Lago, A. Bodi, C. Skull and D. Palathinkal: 2005. ‘Threshold photoelectron photoion coincidence studies of parallel and sequential dissociation reactions’. Phys. Chem. Chem. Phys., 7, 1507–1513.

    Google Scholar 

  • Banna, M. S., B. H. McQuaide, R. Malutzki and V. Schmidt: 1986. ‘The photoelectron-spectrum of water in the 30–140 eV photon energy-range’. J. Chem. Phys., 84, 4739–4744.

    ADS  Google Scholar 

  • Barrett, J. J. and N. I. Adams: 1968. ‘Laser-excited rotation-vibration Raman scattering in ultra-small gas samples’. J. Opt. Soc. Am., 58, 311–319.

    ADS  Google Scholar 

  • Behringer, J. and o. Brandmüller: 1956. ‘Der Resonanz-Raman-Effekt’. Z. Elektrochem., 60, 643–679.

    Google Scholar 

  • Bendtsen, J. and F. Rasmussen: 2000. ‘High-resolution incoherent Fourier transform Raman spectrum of the fundamental band of N-14(2)’. J. Raman Spectrosc., 31, 433–438.

    ADS  Google Scholar 

  • Berkowitz, J.: 1979. Photoabsorption, Photoionization and Photoelectron Spectroscopy. New York: Academic Press.

    Google Scholar 

  • Bersuker, I. B.: 2001. ‘Modern aspects of the Jahn-Teller effect theory and applications to molecular problems’. Chem. Rev., 101, 1067–1114.

    Google Scholar 

  • Birza, P., T. Motylewski, D. Khoroshev, A. Chirokolava H. Linnartz and J. P. Maier: 2002. ‘CW cavity ring down spectroscopy in a pulsed planar plasma expansion’. Chem. Phys., 283, 119–124.

    ADS  Google Scholar 

  • Biswal, H. S., E. Gloaguen, Y. Loquais, B. Tardivel and M. Mons: 2012. ‘Strength of (NHS)-S-… hydrogen bonds in methionine residues revealed by gas-phase IR/UV spectroscopy’. J. Phys. Chem. Lett., 3, 755–759.

    Google Scholar 

  • Bloembergen, N. and A. L. Shawlow: 1981. ‘The Nobel prize in physics “for their contribution to the development of laser spectroscopy” ’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1981/.

  • Bodi, A., B. Sztaray, T. Baer, M. Johnson and T. Gerber: 2007. ‘Data acquisition schemes for continuous two-particle time-of-flight coincidence experiments’. Rev. Sci. Instrum., 78, 084102.

    ADS  Google Scholar 

  • Bodi, A., M. Johnson, T. Gerber, Z. Gengeliczki, B. Sztaray and T. Baer: 2009. ‘Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics’. Rev. Sci. Instrum., 80, 034101.

    ADS  Google Scholar 

  • Böhm, M., J. Tatchen, D. Krügler, K. Kleinermanns, M. G. D. Nix, T. A. LeGreve, T. S. Zwier and M. Schmitt: 2009. ‘High-resolution and dispersed fluorescence examination of vibronic bands of tryptamine: Spectroscopic signatures for L a /L b mixing near a conical intersection’. J. Phys. Chem. A, 113, 2456–2466.

    Google Scholar 

  • Bordé, C. J.: 1983. ‘Matrix equations and diagrams for laser spectroscopy’. In: F. T. Arecchi et al., eds., ‘Advances in Laser Spectroscopy’, 1. New York: Plenum Press.

    Google Scholar 

  • Boyd, R. W.: 1999. ‘Order-of-magnitude estimates of the nonlinear optical susceptibility’. J. Mod. Opt., 46, 367–378.

    ADS  Google Scholar 

  • Boyd, R. W.: 2008. Nonlinear Optics. Burlington, San Diego, London: Academic Press, 3 edn., 640 pages.

    Google Scholar 

  • Brehm, B. and E. von Puttkamer: 1967. ‘Koinzidenzmessungen von Photoionen und Photoelektronen bei Methan’. Z. Naturforschg., A22, 8.

    ADS  Google Scholar 

  • Broyer, M., G. Delacrétaz, P. Labastie, J. P. Wolf and L. Wöste: 1987. ‘Spectroscopy of vibrational ground-state levels of Na3’. J. Phys. Chem., 91, 2626–2630.

    Google Scholar 

  • Broyer, M., G. Delacrétaz, P. Labastie, R. L. Whetten, J. P. Wolf and L. Wöste: 1986. ‘Spectroscopy of Na3’. Z. Phys. D, 3, 131–136.

    ADS  Google Scholar 

  • Castleman, A. W. and K. H. Bowen: 1996. ‘Clusters: Structure, energetics, and dynamics of intermediate states of matter’. J. Phys. Chem., 100, 12 911–12 944.

    Google Scholar 

  • Cha, C. Y., G. Ganteför and W. Eberhardt: 1992. ‘New experimental setup for photoelectron-spectroscopy on cluster anions’. Rev. Sci. Instrum., 63, 5661–5666.

    ADS  Google Scholar 

  • Chandrasekharan, V. and B. Silvi: 1981. ‘Transition polarizabilities and Raman intensities of hydrogenic systems’. J. Phys. B, At. Mol. Phys., 14, 4327–4333.

    ADS  Google Scholar 

  • Chantler, C. T., K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore, S. A. Kotochigova and D. S. Zucker: 2005. ‘X-ray form factor, attenuation, and scattering tables (version 2.1)’, NIST. http://physics.nist.gov/ffast, accessed: 7 Jan 2014.

  • Chase, D. B. and J. F. Rabolt: 1994. Fourier Transform Raman Spectroscopy: From Concept to Experiment. New York: Academic Press.

    Google Scholar 

  • Condon, E. U.: 1928. ‘Nuclear motions associated with electron transitions in diatomic molecules’. Phys. Rev., 32, 0858–0872.

    ADS  Google Scholar 

  • Couto, H., A. Mocellin, C. D. Moreira, M. P. Gomes, A. N. de Brito and M. C. A. Lopes: 2006. ‘Threshold photoelectron spectroscopy of ozone’. J. Chem. Phys., 124, 204311.

    ADS  Google Scholar 

  • Curry, J., L. Herzberg and G. Herzberg: 1933. ‘Spektroskopischer Nachweis und Struktur des PN-Moleküls’. Z. Phys., 86, 348–366.

    ADS  Google Scholar 

  • Cvejanov, S. and F. H. Read: 1974. ‘Studies of threshold electron-impact ionization of helium’. J. Phys. B, At. Mol. Phys., 7, 1841–1852.

    ADS  Google Scholar 

  • Danby, C. J. and J. H. D. Eland: 1972. ‘Photoelectron-photoion coincidence spectroscopy: II. Design and performance of a practical instrument’. Int. J. Mass Spectrom. Ion Phys., 8, 153–161.

    Google Scholar 

  • Delacrétaz, G., E. R. Grant, R. L. Whetten, L. Wöste and J. W. Zwanziger: 1986. ‘Fractional quantization of molecular pseudorotation in Na3’. Phys. Rev. Lett., 56, 2598–2601.

    ADS  Google Scholar 

  • Derro, E. L., C. Murray, T. D. Sechler and M. I. Lester: 2007. ‘Infrared action spectroscopy and dissociation dynamics of the HOOO radical’. J. Phys. Chem. A, 111, 11 592–11 601.

    Google Scholar 

  • Derro, E. L., T. D. Sechler, C. Murray and M. I. Lester: 2008. ‘Infrared action spectroscopy of the OD stretch fundamental and overtone transitions of the DOOO radical’. J. Phys. Chem. A, 112, 9269–9276.

    Google Scholar 

  • Di Teodoro, F. and E. F. McCormack: 1999. ‘The effect of laser bandwidth on the signal detected in two-color, resonant four-wave mixing spectroscopy’. J. Chem. Phys., 110, 8369–8383.

    ADS  Google Scholar 

  • Druet, S. A. J. and J. P. E. Taran: 1981. ‘Cars spectroscopy’. Prog. Quantum Electron., 7, 1–72.

    ADS  Google Scholar 

  • Eland, J. H. D.: 1972. ‘Photoelectron-photoion coincidence spectroscopy – I. Basic principles and theory’. Int. J. Mass Spectrom. Ion Phys., 8, 143–151.

    Google Scholar 

  • Eland, J. H. D.: 2009. ‘Dynamics of double photoionization in molecules and atoms’. In: S. Rice, ed., ‘Adv. Chem. Phys.’, vol. 141, 103–151. Berlin: Wiley.

    Google Scholar 

  • Elliott, B. M., L. R. McCunn and M. A. Johnson: 2008. ‘Photoelectron imaging study of vibrationally mediated electron autodetachment in the type I isomer of the water hexamer anion’. Chem. Phys. Lett., 467, 32–36.

    ADS  Google Scholar 

  • Ervin, K. M. and W. C. Lineberger: 1992. ‘Photoelectron spectroscopy of negative ions’. In: N. Adams and L. Babcock, eds., ‘Advances in Gas Phase Ion Chemistry’, 121–166. Greenwich: JAI Press.

    Google Scholar 

  • Farmanara, P., W. Radloff, V. Stert, H.-H. Ritze and I. V. Hertel: 1999. ‘Real-time observation of hydrogen transfer: Femtosecond time-resolved photoelectron spectroscopy in excited ammonia dimer’. J. Chem. Phys., 111, 633–642.

    ADS  Google Scholar 

  • Fenn, J. B.: 2002. ‘Nobel lecture: Electrospray wings for molecular elephants’, Stockholm. http://nobelprize.org/nobel_prizes/chemistry/laureates/2002/fenn-lecture.html.

  • Franck, J.: 1926. ‘Elementary processes of photochemical reactions’. Trans. Faraday Soc., 21, 0536–0542.

    Google Scholar 

  • GATS: 2012. ‘High resolution spectral modelling’, Newport News, VA: GATS Inc. – Atmospheric Science. http://www.spectralcalc.com/spectral_browser/db_intensity.php, accessed: 9 Jan 2014.

  • Gaussian: 2013. ‘Gaussian 09 rev. D’, Gaussian, Inc., Wallingford, CT, USA. http://www.gaussian.com/, accessed: 9 Jan 2014.

  • Gelius, U., E. Basilier, S. Svensson, T. Bergmark and K. Siegbahn: 1974. ‘A high resolution ESCA instrument with X-ray monochromator for gases and fluids’. J. Electron Spectrosc., 2, 405–434.

    Google Scholar 

  • Godehusen, K.: 2004. Private Communication.

    Google Scholar 

  • Göppert-Mayer, M.: 1931. ‘Über Elementarakte mit zwei Quantensprüngen’. Ann. Phys. Berlin, 9, 273–294.

    Google Scholar 

  • Grabow, J. U., W. Stahl and H. Dreizler: 1996. ‘A multioctave coaxially oriented beam-resonator arrangement Fourier-transform microwave spectrometer’. Rev. Sci. Instrum., 67, 4072–4084.

    ADS  Google Scholar 

  • Greer, J. C., W. Gotzeina, W. Kamke, H. Holland and I. V. Hertel: 1990. ‘TPEPICO observation of the threshold region of N2O clusters’. Chem. Phys. Lett., 168, 330–336.

    ADS  Google Scholar 

  • Haugstätter, R., A. Goerke and I. V. Hertel: 1988. ‘Case studies in multi-photon ionization and dissociation of Na2 I. The (2) 1 σ u pathway’. Z. Phys. D, 9, 153–166.

    ADS  Google Scholar 

  • Haugstätter, R., A. Goerke and I. V. Hertel: 1989. ‘Ionization and fragmentation of auto-ionizing Rydberg states in Na2’. Phys. Rev. A, 39, 5085–5091.

    ADS  Google Scholar 

  • Haugstätter, R., A. Goerke and I. V. Hertel: 1990. ‘Case-studies in multi-photon ionization and dissociation of Na2 III. Dissociative ionization’. Z. Phys. D, 16, 61–70.

    ADS  Google Scholar 

  • Hellweg, A.: 2008. ‘Inversion, internal rotation, and nitrogen nuclear quadrupole coupling of p-toluidine as obtained from microwave spectroscopy and ab initio calculations’. Chem. Phys., 344, 281–290.

    ADS  Google Scholar 

  • Herzberg, G.: 1971. ‘Nobel lecture: Spectroscopic studies of molecular structure’, Stockholm: and Science 14 (1972) 123–138. http://nobelprize.org/nobel_prizes/chemistry/laureates/1971/herzberg-lecture.html.

  • Herzberg, G.: 1989. Molecular Spectra and Molecular Structure, vol. I. Diatomic Molecules. Malabar: Krieger Publishing Company, 660 pages.

    Google Scholar 

  • Hotop, H.: 2008. ‘Demonstration experiment in experimental physics at the Technical University Kaiserslautern’. We are grateful for the valuable material.

    Google Scholar 

  • Hotop, H. and W. C. Lineberger: 1985. ‘Binding-energies in atomic negative-ions 2’. J. Phys. Chem. Ref. Data, 14, 731–750.

    ADS  Google Scholar 

  • ISO 21348: 2007. ‘Space environment (natural and artificial) – Process for determining solar irradiances’. International Organization for Standardization, Geneva, Switzerland.

    Google Scholar 

  • Jarvis, G. K., K. M. Weitzel, M. Malow, T. Baer, Y. Song and C. Y. Ng: 1999. ‘High-resolution pulsed field ionization photoelectron-photoion coincidence spectroscopy using synchrotron radiation’. Rev. Sci. Instrum., 70, 3892–3906.

    ADS  Google Scholar 

  • Jochnowitz, E. B. and J. P. Maier: 2008. ‘Electronic spectroscopy of carbon chains’. Annu. Rev. Phys. Chem., 59, 519–544.

    ADS  Google Scholar 

  • de Jong, W. A., L. Visscher and W. C. Nieuwpoort: 1997. ‘Relativistic and correlated calculations on the ground, excited, and ionized states of iodine’. J. Chem. Phys., 107, 9045–9058.

    Google Scholar 

  • Kamke, W., R. Herrmann, Z. Wang and I. V. Hertel: 1988. ‘On the photoionization and fragmentation of ammonia clusters using TPEPICO’. Z. Phys. D, 10, 491–497.

    ADS  Google Scholar 

  • Kamke, W., J. de Vries, J. Krauss, E. Kaiser, B. Kamke, I. V. Hertel: 1989. ‘Photoionisation studies of homogeneous argon and krypton clusters using TPEPICO’. Z. Phys. D, 14, 339–351.

    ADS  Google Scholar 

  • Keil, M., H. G. Kämer, A. Kudell, M. A. Baig, J. Zhu, W. Demtröder and W. Meyer: 2000. ‘Rovibrational structures of the pseudorotating lithium trimer 21Li3: Rotationally resolved spectroscopy and ab initio calculations of the a2 e′′←x2 e′ system’. J. Chem. Phys., 113, 7414–7431.

    ADS  Google Scholar 

  • Kelly, M. A.: 2004. ‘The development of commercial ESCA instrumentation: A personal perspective’. J. Chem. Educ., 81, 1726–1733.

    Google Scholar 

  • Khoroshev, D., M. Araki, P. Kolek, P. Birza, A. Chirokolava and J. P. Maier: 2004. ‘Rotationally resolved electronic spectroscopy of a nonlinear carbon chain radical \(\mathrm{C}_{6}\mathrm{H}_{4}^{+}\)’. J. Mol. Spectrosc., 227, 81–89.

    ADS  Google Scholar 

  • King, G. C., M. Zubek, P. M. Rutter and F. H. Read: 1987. ‘A high resolution threshold electron spectrometer for use in photoionisation studies’. J. Phys. E, Sci. Instrum., 20, 440–443.

    ADS  Google Scholar 

  • Knight, P. L., M. A. Lauder and B. J. Dalton: 1990. ‘Laser-induced continuum structure’. Phys. Rep., 190, 1–61.

    ADS  Google Scholar 

  • Krämer, H. G., M. Keil, C. B. Suarez, W. Demtröder and W. Meyer: 1999. ‘Vibrational structures in the A 2E′′←X 2E′ system of the lithium trimer: high-resolution spectroscopy and ab initio calculations’. Chem. Phys. Lett., 299, 212–220.

    ADS  Google Scholar 

  • Lee, G. H., S. T. Arnold, J. G. Eaton, H. W. Sarkas, K. H. Bowen, C. Ludewigt and H. Haberland: 1991. ‘Negative-ion photoelectron-spectroscopy of solvated electron cluster anions, \((\mathrm{H}_{2}\mathrm{O})_{n}^{-}\) and \((\mathrm{NH}_{3})_{n}^{-}\)’. Z. Phys. D, 20, 9–12.

    ADS  Google Scholar 

  • Lembach, G. and B. Brutschy: 1996. ‘Fragmentation energetics and dynamics of the neutral and ionized fluorobenzene⋅Ar cluster studied by mass analyzed threshold ionization spectroscopy’. J. Phys. Chem., 100, 19758–19763.

    Google Scholar 

  • Lineberger, W. C. and B. W. Woodward: 1970. ‘High resolution photodetachment of S near threshold’. Phys. Rev. Lett., 25, 424–427.

    ADS  Google Scholar 

  • Markovich, G., S. Pollack, R. Giniger and O. Cheshnovsky: 1994. ‘Photoelectron-spectroscopy of Cl, Br, and I solvated in water clusters’. J. Chem. Phys., 101, 9344–9353.

    ADS  Google Scholar 

  • Mazzotti, F. J., E. Achkasova, R. Chauhan, M. Tulej, P. P. Radi and J. P. Maier: 2008. ‘Electronic spectra of radicals in a supersonic slit-jet discharge by degenerate and two-color four-wave mixing’. Phys. Chem. Chem. Phys., 10, 136–141.

    Google Scholar 

  • McCarthy, M. C., V. Lattanzi, D. Kokkin, O. Martinez and J. F. Stanton: 2012. ‘On the molecular structure of HOOO’. J. Chem. Phys., 136, 034303.

    ADS  Google Scholar 

  • Meerts, W. L. and M. Schmitt: 2006. ‘Application of genetic algorithms in automated assignments of high-resolution spectra’. Int. Rev. Phys. Chem., 25, 353–406.

    Google Scholar 

  • Müller-Dethlefs, K., M. Sander and E. W. Schlag: 1984. ‘A novel method capable of resolving rotational ionic states by the detection of threshold photoelectrons with a resolution of 1.2 cm−1’. Z. Naturforschg., A 39, 1089–1091.

    ADS  Google Scholar 

  • Müller-Dethlefs, K. and E. W. Schlag: 1991. ‘High-resolution zero kinetic-energy (zeke) photoelectron-spectroscopy of molecular-systems’. Annu. Rev. Phys. Chem., 42, 109–136.

    ADS  Google Scholar 

  • Müller-Dethlefs, K. and E. W. Schlag: 1998. ‘Chemical applications of zero kinetic energy (zeke) photoelectron spectroscopy’. Angew. Chem. Int. Ed., 37, 1346–1374.

    Google Scholar 

  • Murray, C., E. L. Derro, T. D. Sechler and M. I. Lester: 2007. ‘Stability of the hydrogen trioxy radical via infrared action spectroscopy’. J. Phys. Chem. A, 111, 4727–4730.

    Google Scholar 

  • Neumark, D. M.: 2001. ‘Time-resolved photoelectron spectroscopy of molecules and clusters’. Annu. Rev. Phys. Chem., 52, 255–277.

    ADS  Google Scholar 

  • Neumark, D. M.: 2002. ‘Spectroscopy of reactive potential energy surfaces’. PhysChemComm, 5, 76–81.

    Google Scholar 

  • Powis, I., T. Baer and C. Y. Ng, eds.: 1995. High Resolution Laser Photoionization and Photoelectron Studies. Ion Chemistry and Physics. Chichester: Wiley.

    Google Scholar 

  • Raman, C. V.: 1930. ‘The Nobel prize in physics: for his work on the scattering of light and for the discovery of the effect named after him’, Stockholm. http://www.nobelprize.org/nobel_prizes/physics/laureates/1930/.

  • Reinert, F. and S. Hüfner: 2005. ‘Photoemission spectroscopy – from early days to recent applications’. New J. Phys., 7, 97. http://iopscience.iop.org/1367-2630/7/1/097, accessed: 9 Jan 2014.

    ADS  Google Scholar 

  • Rienstra-Kiracofe, J. C., G. S. Tschumper, H. F. Schaefer, S. Nandi and G. B. Ellison: 2002. ‘Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations’. Chem. Rev., 102, 231–282.

    Google Scholar 

  • Rizzo, T. R., J. A. Stearns and O. V. Boyarkin: 2009. ‘Spectroscopic studies of cold, gas-phase biomolecular ions’. Int. Rev. Phys. Chem., 28, 481–515.

    Google Scholar 

  • Rothman, L. S. et al.: 2009. ‘The HITRAN 2008 molecular spectroscopic database’. J. Quant. Spectrosc. Radiat. Transf., 110, 533–572.

    ADS  Google Scholar 

  • Shen, Y. R.: 2003. The Principles of Nonlinear Spectroscopy. New York: Wiley, 563 pages.

    Google Scholar 

  • Sheps, L., E. M. Miller and W. C. Lineberger: 2009. ‘Photoelectron spectroscopy of small IBr(CO2) n , (n=0−3) cluster anions’. J. Chem. Phys., 131, 064304.

    ADS  Google Scholar 

  • Siegbahn, K.: 1981. ‘Nobel lecture: Electron spectroscopy for atoms, molecules and condensed matter’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1981/siegbahn- lecture.html.

  • Slanger, T. G.: 1978. ‘Generation of \(\mathrm{O}_{2}(c\,{}^{1}\varSigma _{u}^{-}, c\,{}^{3}\Delta_{u}, a\,{}^{3}\varSigma_{u}^{+})\) from oxygen atom recombination’. J. Chem. Phys., 69, 4779–4791.

    ADS  Google Scholar 

  • Stert, V., W. Radloff, C. P. Schulz and I. V. Hertel: 1999. ‘Ultrafast photoelectron spectroscopy: Femtosecond pump-probe coincidence detection of ammonia cluster ions and electrons’. Eur. Phys. J. D, 5, 97–106.

    ADS  Google Scholar 

  • Stert, V., W. Radloff, T. Freudenberg, F. Noack, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux and D. Solgadi: 1997. ‘Femtosecond time-resolved photoelectron spectra of ammonia molecules and clusters’. Europhys. Lett., 40, 515–520.

    ADS  Google Scholar 

  • Suma, K., Y. Sumiyoshi and Y. Endo: 2005. ‘The rotational spectrum and structure of the HOOO radical’. Science, 308, 1885–1886.

    ADS  Google Scholar 

  • Sztaray, B. and T. Baer: 2003. ‘Suppression of hot electrons in threshold photoelectron photoion coincidence spectroscopy using velocity focusing optics’. Rev. Sci. Instrum., 74, 3763–3768.

    ADS  Google Scholar 

  • Tanaka, K.: 2002. ‘Nobel lecture: The origin of macromolecule ionization by laser irradiation’, Stockholm. http://nobelprize.org/nobel_prizes/chemistry/laureates/2002/tanaka-lecture.html.

  • Taylor, K. J., C. L. Pettiette-Hall, O. Cheshnovsky and R. E. Smalley: 1992. ‘Ultraviolet photoelectron-spectra of coinage metal-clusters’. J. Chem. Phys., 96, 3319–3329.

    ADS  Google Scholar 

  • Travnikova, O., K. J. Børveb, M. Patanena, J. Söderström, Miron Catalin, L. J. Sæthre, N. Martensson and S. Svensson: 2012. ‘The ESCA molecule – historical remarks and new results’. J. Electron Spectrosc., 185, 191–197.

    Google Scholar 

  • Trofimov, A. B., J. Schirmer, V. B. Kobychev, A. W. Potts, D. M. P. Holland and L. Karlsson: 2006. ‘Photoelectron spectra of the nucleobases cytosine, thymine and adenine’. J. Phys. B, At. Mol. Phys., 39, 305–329.

    ADS  Google Scholar 

  • Truesdale, C. M., S. Southworth, P. H. Kobrin, D. W. Lindle, G. Thornton and D. A. Shirley: 1982. ‘Photo-electron angular-distributions of H2O’. J. Chem. Phys., 76, 860–865.

    ADS  Google Scholar 

  • de Vries, M. S. and P. Hobza: 2007. ‘Gas-phase spectroscopy of biomolecular building blocks’. Annu. Rev. Phys. Chem., 58, 585–612.

    ADS  Google Scholar 

  • Wassermann, T. N., O. V. Boyarkin, B. Paizs and T. R. Rizzo: 2012. ‘Conformation-specific spectroscopy of peptide fragment ions in a low-temperature ion trap’. J. Am. Soc. Mass Spectrom., 23, 1029–1045.

    ADS  Google Scholar 

  • Weber, A., ed.: 1979. Raman Spectroscopy in Gases and Liquids, vol. 11 of Topics in Current Physics. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Werner, A. S. and T. Baer: 1975. ‘Absolute unimolecular decay-rates of energy selected \(\mathrm{C}_{4}\mathrm{H}_{6}^{+}\) metastable ions’. J. Chem. Phys., 62, 2900–2910.

    ADS  Google Scholar 

  • Williams, S., E. A. Rohlfing, L. A. Rahn and R. N. Zare: 1997. ‘Two-color resonant four-wave mixing: Analytical expressions for signal intensity’. J. Chem. Phys., 106, 3090–3102.

    ADS  Google Scholar 

  • Williams, S., J. D. Tobiason, J. R. Dunlop and E. A. Rohlfing: 1995. ‘Stimulated-emission pumping spectroscopy via 2-color resonant 4-wave-mixing’. J. Chem. Phys., 102, 8342–8358.

    ADS  Google Scholar 

  • Williams, S., R. N. Zare and L. A. Rahn: 1994. ‘Reduction of degenerate 4-wave-mixing spectra to relative populations .1. Weak-field limit’. J. Chem. Phys., 101, 1072–1092.

    ADS  Google Scholar 

  • Winter, B., R. Weber, W. Widdra, M. Dittmar, M. Faubel and I. V. Hertel: 2004. ‘Full valence band photoemission from liquid water using EUV synchrotron radiation’. J. Phys. Chem. A, 108, 2625–2632.

    Google Scholar 

  • Wrigge, G., M. A. Hoffmann, B. von Issendorff and H. Haberland: 2003. ‘Ultraviolet photoelectron spectroscopy of \(\mathrm{Nb}^{-}_{4}\) to \(\mathrm{Nb}^{-}_{200}\)’. Eur. Phys. J. D, 24, 23–26.

    ADS  Google Scholar 

  • Wright, J. C., R. J. Carlson, G. B. Hurst, J. K. Steehler, M. T. Riebe, B. B. Price, D. C. Nguyen and S. H. Lee: 1991. ‘Molecular, multiresonant coherent 4-wave-mixing spectroscopy’. Int. Rev. Phys. Chem., 10, 349–390.

    Google Scholar 

  • Yang, S. H., C. L. Pettiette, J. Conceicao, O. Cheshnovsky and R. E. Smalley: 1987. ‘Ups of buckminsterfullerene and other large clusters of carbon’. Chem. Phys. Lett., 139, 233–238.

    ADS  Google Scholar 

  • Yee, S. Y., T. K. Gustafson, S. A. J. Druet and J. P. E. Taran: 1977. ‘Diagrammatic evaluation of density operator for nonlinear optical calculations’. Opt. Commun., 23, 1–7.

    ADS  Google Scholar 

  • Zhu, L. C. and P. Johnson: 1991. ‘Mass analyzed threshold ionization spectroscopy’. J. Chem. Phys., 94, 5769–5771.

    ADS  Google Scholar 

  • Zwier, T. S.: 2001. ‘Laser spectroscopy of jet-cooled biomolecules and their water-containing clusters: Water bridges and molecular conformation’. J. Phys. Chem. A, 105, 8827–8839.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Acronyms and Terminology

AOM:

‘Acousto-optic modulator’, device to modulate and shift the frequency of light by diffraction in a Bragg grating generated by sound waves (usually RF).

BOXCARS:

‘Schematic geometry of a setup for nonlinear spectroscopy’, (see Fig. 5.42).

CARS:

‘Coherent anti-Stokes Raman scattering’, coherent version of Raman scattering.

CCD:

‘Charge coupled device’, semiconductor device typically used for digital imaging (e.g. in electronic cameras).

CFWM:

‘Coherent four wave mixing’, nonlinear optical processes (see Sect. 5.7.1).

conformer:

‘Special kind of isomers (same atomic composition but different molecular structure) having the same sequence of atoms but different geometrical arrangement, such as cis-trans isomers or different alignment with respect to rotation around an axis’, http://en.wikipedia.org/wiki/Conformational_isomerism.

COORS:

‘Common ordinary old Raman scattering’.

CRD:

‘Cavity ring down’, spectrometer (see Sect. 5.5.3).

CSRS:

‘Coherent Stokes Raman scattering’, coherent version of Raman scattering.

CW:

‘Continuous wave’, (as opposed to pulsed) light beam, laser radiation etc.

DF:

‘(laser induced), dispersed fluorescence’.

DFWM:

‘Degenerate four wave mixing’, nonlinear optical process (see Sect. 5.7.1).

DNA:

‘Deoxyribonucleic acid’, large nucleic acid which contains the genetic code according to which living organisms are build.

E1:

‘Electric dipole’, transitions induced by the interaction of an electric dipole with the electric field component of electromagnetic radiation.

EPR:

‘Electron paramagnetic resonance’, spectroscopy, also called electron spin resonance ESR (see Sect. 9.5.2 in Vol. 1).

ESCA:

‘Electron spectroscopy for chemical analysis’, see Sect. 5.51.

ESI:

‘electro spray ionization’, method for bringing very large molecular ions into the gas phase (see Sect. 5.28).

esu:

‘electrostatic units’, old system of unities, equivalent to the Gauss system for electric quantities (see Appendix A.3 in Vol. 1).

EUV:

‘Extreme ultraviolet’, part of the UV spectral range. Wavelengths between \(10\operatorname{nm}\) and \(121\operatorname{nm}\) according to ISO 21348 (2007).

EXAFS:

‘Extended X-ray absorption fine structure’, X-ray absorption by inner shell electrons in a broad energy range above the respective X-ray absorption edge (as opposed to NEXAFS).

FC:

Franck-Condon’, introduced an important approximation for optical transition between electronic states (see Sect. 5.4.1).

FDIRS:

‘fluorescent-dip infrared spectroscopy’, (see Zwier 2001).

FEICO:

‘Femtosecond time resolved electron ion coincidence’, see Sect. 5.8.5.

FIR:

‘Far infrared’, spectral range of electromagnetic radiation. Wavelengths between 3 μm and \(1\operatorname{mm}\) according to ISO 21348 (2007).

FPI:

Fabry-Pérot interferometer’, for high precision spectroscopy and laser resonators (see Sect. 6.1.2 in Vol. 1).

FT:

Fourier transform’, see Appendix I in Vol. 1.

FTIR:

Fourier transform infrared spectroscopy’, see Sect. 5.3.2.

FWHM:

‘Full width at half maximum’.

FWM:

‘Four wave mixing’, nonlinear optical processes (see Sect. 5.7.1).

HFS:

‘Hyperfine structure’, splitting of atomic and molecular energy levels due to interactions of the active electron with the atomic nucleus (Chap. 9 in Vol. 1).

HHG:

‘High harmonic generation’, in intense laser fields.

HITRAN:

High-resolution transmission molecular absorption database’, http://www.cfa.harvard.edu/hitran (Rothman et al. 2009).

IAS:

‘Infrared action spectroscopy’, special method to detect infrared absorption by particle detection (see Sect. 5.3.3).

IC:

‘Internal conversion’, radiationless transition between different electronic states (see Sect. 5.4.3).

iPEPICO:

‘Imaging photoelectron-photoion coincidence spectroscopy’, see also PEPICO, Sect. 5.8.5.

IR:

‘Infrared’, spectral range of electromagnetic radiation. Wavelengths between \(760\operatorname{nm}\) and \(1\operatorname{mm}\) according to ISO 21348 (2007).

ISC:

‘Intersystem crossing’, radiationless transition between states with different total spin, typically between singlet and triplet states (see Chap. 5, Fig. 5.15).

isomer:

‘Molecules with the same atomic composition but different molecular structure’, http://en.wikipedia.org/wiki/Isomer.

isosceles triangle:

‘Triangle with two equal sides’, has two varieties: acute (all angles are <90) and obtuse (one angles is >90).

isotopologue:

‘Molecules that differ only in their isotopic composition’, http://en.wikipedia.org/wiki/Isotopologue.

isotopomer:

‘Molecules with the same number of isotopes of each element but differ in their position within the molecule’, http://en.wikipedia.org/wiki/Isotopomers.

IVR:

‘Intra molecular vibrational energy redistribution’, excess vibrational energy in one mode of a polyatomic molecule is redistributed among other vibrational modes.

JT:

Jahn and Teller’, have first treated in 1937 the symmetry breaking effect, now referred to by their names.

JTE:

Jahn-Teller effect’, symmetry breaking effect first treated by Jahn and Teller in 1937.

KETOF:

‘Kinetic energy analysis by time of flight’, method for determining fragmentation energies after dissociative ionization.

LIF:

‘Laser induced fluorescence’, radiation emitted from a quantum system after excitation by laser radiation (see Sect. 5.5.1).

M1:

‘Magnetic dipole’, transitions induced by the interaction of a magnetic dipole with the magnetic field component of electromagnetic radiation.

MALDI:

‘Matrix assisted laser desorption ionization’, method for bringing very large molecular ions into the gas phase (see Sect. 5.28).

MATI:

‘Mass analyzed threshold ionization’, see Sect. 5.8.3.

MB:

‘Molecular beam’.

MCA:

‘Multi channel analyzer’, electronic device, storing pulses according to their pulse height (originally used in nuclear physics).

MCP:

‘Multi channel plate’, electron multiplier with many amplifying elements.

MIR:

‘Middle infrared’, spectral range of electromagnetic radiation. Wavelengths between 1.4 μm and 3 μm according to ISO 21348 (2007).

MO:

‘Molecular orbital’, single electron wave function in a molecule; typically the basis for a rigorous molecular structure calculation.

MRCI:

‘Multi reference configuration interaction’, high quality quantum chemical method for computing molecular potentials.

MW:

‘Microwave’, range of the electromagnetic spectrum. In spectroscopy MW usually refers to wavelengths from \(1\operatorname{mm}\) to \(1\operatorname{m}\) corresponding to frequencies between \(0.3\operatorname{GHz}\) to \(300\operatorname{GHz}\); ISO 21348 (2007) defines it as the wavelength range between \(1\operatorname{mm}\) to \(15\operatorname{mm}\).

MWFT:

‘Microwave Fourier transform’, spectrometer (see Sect. 5.2).

NEXAFS:

‘Near edge X-ray fine structure absorption, also XANES’, X-ray absorption by inner shell electrons close to the respective X-ray absorption edge.

NIR:

‘Near infrared’, spectral range of electromagnetic radiation. Wavelengths between \(760\operatorname{nm}\) and 1.4 μm according to ISO 21348 (2007).

NIST:

‘National institute of standards and technology’, located at Gaithersburg (MD) and Boulder (CO), USA. http://www.nist.gov/index.html.

NMR:

‘Nuclear magnetic resonance’, spectroscopy, a rather universal spectroscopic method for identifying molecules (see Sect. 9.5.3 in Vol. 1).

ODE:

‘Ordinary differential equation’.

OMA:

‘Optical multichannel analyzer’, spectrometer which allows simultaneous registration of a whole spectrum.

OODR:

‘Optical-optical double resonance’, spectroscopy with two photons, one kept fixed on a resonance transition, one tuning another part of the spectrum.

PEPICO:

‘Photoelectron-photoion coincidence spectroscopy’, method to correlate a photoelectron with one specific fragment ion (see Sect. 5.8.5).

PES:

‘Photoelectron spectroscopy’, see Sect. 5.8.

PFI:

‘Pulsed field ionization’, electrons are extracted from the ionization volume with some time delay.

PJTE:

‘Pseudo-Jahn-Teller effect’, vibronic coupling for nearly degenerate molecular states, leading to symmetry breaking.

R2PI:

‘also RTPI, resonantly enhanced two-photon ionization spectroscopy’, special version of REMPI.

REMPI:

‘Resonantly enhanced multi-photon ionization’, ionization of atoms or molecules by several photons with one resonant intermediate state.

RF:

‘Radio frequency’, range of the electromagnetic spectrum. Technically, one includes frequencies from \(3\operatorname{kHz}\) up to \(300\operatorname{GHz}\) or wavelengths from \(100\operatorname{km}\) to \(1\operatorname{mm}\); ISO 21348 (2007) defines the RF wavelengths from \(100\operatorname{m}\) to \(0.1\operatorname{mm}\); in spectroscopy RF usually refers to \(100\operatorname{kHz}\) up to some \(\operatorname{GHz}\).

RIDIRS:

‘Resonant ion dip infrared spectroscopy’, (see Zwier 2001).

RTPI:

‘also R2PI, resonantly enhanced two-photon ionization spectroscopy’, special version of REMPI.

SEM:

‘Secondary electron multiplier’, see Appendix B.1.

SEP:

‘Stimulated emission pumping’, special kind of two colour resonant four wave mixing (see TC-RFWM).

SERS:

‘Surface enhanced Raman spectroscopy’.

SI:

‘Système international d’unités’, international system of units (m, kg, s, A, K, mol, cd), for details see the website of the Bureau International des Poids et Mésure http://www.bipm.org/en/si/ or NIST http://physics.nist.gov/cuu/Units/index.html.

TAC:

‘Time to amplitude converter’, electronic device, same as time to height converter.

tautomer:

‘Special isomers which readily interconvert by moving single atoms (e.g. H) or atomic groups’, http://en.wikipedia.org/wiki/Tautomer.

TC-RFWM:

‘Two colour resonant four wave mixing’, nonlinear optical process (see Sect. 5.7.1).

TDC:

‘Time to digital converter’, electronic device.

TOF:

‘Time of flight’, measurement to determine velocities of charged particles, and consequently their energies (if the mass to charge ratio is known) or their mass to charge ratio (if their energy is known).

TPEPICO:

‘Threshold photoelectron-photoion coincidence spectroscopy’, method to correlate photoelectrons of nearly zero kinetic energy with one specific fragment ion (see Sect. 5.8.5).

TPES:

‘Threshold photoelectron spectroscopy’, PES of only those electrons which are emitted with nearly vanishing kinetic energy, i.e. at threshold of the process studied.

UPS:

‘Ultraviolet photoelectron spectroscopy’.

UV:

‘Ultraviolet’, spectral range of electromagnetic radiation. Wavelengths between \(100\operatorname{nm}\) and \(400\operatorname{nm}\) according to ISO 21348 (2007).

VIS:

‘Visible’, spectral range of electromagnetic radiation. Wavelengths between \(380\operatorname{nm}\) and \(760\operatorname{nm}\) according to ISO 21348 (2007).

VMI:

‘Velocity map imaging’, experimental method for registration (and visualization) of particle velocities as a function of their angular distribution (see Appendix B).

VUV:

‘Vacuum ultraviolet’, spectral range of electromagnetic radiation. part of the UV spectral range. Wavelengths between \(10\operatorname{nm}\) and \(200\operatorname{nm}\) according to ISO 21348 (2007).

XANES:

‘X-ray absorption near edge spectroscopy, also NEXAFS’, X-ray absorption by inner shell electrons close to the respective X-ray absorption edge.

XAS:

‘X-ray absorption spectroscopy’, Used for to study the electronic states of inner shell electrons.

XPS:

‘X-ray photoelectron spectroscopy’, see Sect. 5.8.1.

XUV:

‘Soft x-ray (sometimes also extreme UV)’, spectral wavelength range between \(0.1\operatorname{nm}\) and \(10\operatorname{nm}\) according to ISO 21348 (2007), sometimes up to \(40\operatorname{nm}\).

ZEKE:

‘Zero kinetic energy’, photoelectron spectroscopy (see Sect. 5.8.3).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hertel, I.V., Schulz, CP. (2015). Molecular Spectroscopy. In: Atoms, Molecules and Optical Physics 2. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54313-5_5

Download citation

Publish with us

Policies and ethics