Skip to main content

Polyatomic Molecules

  • Chapter
  • 5328 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Section 4.1 presents the arbitrarily shaped, rigid rotor, and Sect. 4.2. introduces normal coordinates used to treat vibrations. Section 4.3 addresses the symmetries of point groups as a key principle to classify polyatomic molecules. The specialties of the electronic structure of polyatomic molecules are introduced in Sect. 4.4 by way of example, starting with H2O. We then introduce the important concept of orbital hybridization by discussing sp 3 MOs for CH4 and NH3 (Sect. 4.4.2). Finally, in Sect. 4.5 conjugated hydrocarbon systems are introduced. A simple, quantitative description is provided by the Hückel approximation (HMO).

Diatomic molecules, treated in the previous chapter, provide only a first step into the world of real molecules. Anyone who wishes to obtain an idea about that world should at least browse through the present chapter – even though it is, admittedly, somewhat demanding. The spectroscopy of triatomic and polyatomic molecules is largely determined by their symmetry, and all concepts introduced in Chap.  3 have to be generalized. The motion of, say, \(\mathcal{N}_{\mathrm{nu}}\) atomic nuclei is characterized by three rotational and \(3\mathcal{N}_{\mathrm{nu}}-6\) vibrational degrees of freedom (aside from the trivial three translational motions). Correspondingly, the description of electronic states becomes significantly more complex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that we use, here too, the orthonormalized operators in contrast to the combinations \(\widehat{N}_{a}\pm \mathrm {i}\widehat{N}_{b}\) often used in the literature.

  2. 2.

    That is a matrix for which \(\hat {A}^{\top }=\hat{A}^{-1}\) or equivalently \(\hat{A}^{\top}\hat{A}=\widehat {\mathbf {1}}\).

  3. 3.

    In the older literature (e.g. Herzberg 1991) one finds for \(\bar{\nu}_{1}=1\,388.3\operatorname{cm}^{-1}\) and for \(2\bar{\nu}_{2}=1\,285.5\operatorname{cm}^{-1}\). This leads to an interchange of the states (1000) and (0200).

  4. 4.

    HITRAN notation. See Sect. 5.2.4, Vol. 1 how to convert spectroscopic line strengths into spectra.

  5. 5.

    One also finds slightly different values for R 0 and α in the literature. For a recent discussion see Yachmenev et al. (2010).

  6. 6.

    Note that the position x of N in respect of the H3 plane is here not mass scaled. The corresponding normal coordinate is given by \(Q_{2}=\sqrt{\bar{M}}x\).

  7. 7.

    Note: Quantum mechanical operators associated with these symmetry elements will be designated by a caret ( \(\widehat{\phantom{o}}\) ) on top of the element symbol, e.g. \(\widehat{C}_{n}\) for the operator rotating a wave function through an angle 2π/n.

  8. 8.

    With i=1, 2, or 3 and p=u or g.

  9. 9.

    The electron binding energies of the water MOs given in Fig. 4.22 are derived from gas phase photoionization energies (see e.g. Winter et al. 2004): \(W_{I}=539.9\operatorname{eV}\) (1a 1), \(32.6\operatorname{eV}\) (2a 1), \(18.8\operatorname{eV}\) (1b 2), \(14.8\operatorname{eV}\) (3a 1), and \(12.6\operatorname{eV}\) (1b 1). According to Koopman’s theorem (see Sect. 10.2.4 in Vol. 1) these values should correspond to the orbital energies W=−W I . The energies of the unoccupied MOs are taken from Chaplin (2013) \(6\operatorname{eV}\) (4a 1), \(8\operatorname{eV}\) (2b 2) and \(28\operatorname{eV}\) (3b 2) (RHF approximation).

  10. 10.

    If one would simply add the charge densities of the four hybrid orbitals (∑|ψ j |2) the result would be a fully spherical charge distribution.

  11. 11.

    For localized bonds we had (3.108) ε g =(H AA+H AB)/(1+S). Identifying H AA=α and H AB=β gives for one atom ε g =α+β when the overlap integral S is ignored.

  12. 12.

    Jmol is an open source Java viewer for molecular structures which appears now to be the generally accepted standard: It can be easily installed into most browsers.

References

  • Bernath, P. F.: 2002a. ‘Laser chemistry – water vapor gets excited’. Science, 297, 943–944.

    Article  Google Scholar 

  • Bernath, P. F.: 2002b. ‘The spectroscopy of water vapour: Experiment, theory and applications’. Phys. Chem. Chem. Phys., 4, 1501–1509.

    Article  Google Scholar 

  • Bersuker, I. B.: 2001. ‘Modern aspects of the Jahn-Teller effect theory and applications to molecular problems’. Chem. Rev., 101, 1067–1114.

    Article  Google Scholar 

  • Bunker, P. R. and P. Jensen: 2006. Molecular Symmetry and Spectroscopy. Ottawa: NRC Research Press, 2nd edn., 747 pages.

    Google Scholar 

  • Carleer, M. et al.: 1999. ‘The near infrared, visible, and near ultraviolet overtone spectrum of water’. J. Chem. Phys., 111, 2444–2450.

    Article  ADS  Google Scholar 

  • Chaplin, M.: 2013. ‘Water structure and science’, London South Bank University. http://www.lsbu.ac.uk/water/, accessed: 9 Jan 2014.

  • Damburg, R. J. and R. K. Propin: 1972. ‘Rotational structure of the inversion spectrum of ammonia’. J. Phys. B, At. Mol. Phys., 5, 1861–1867.

    Article  ADS  Google Scholar 

  • Deleuze, M. S., A. B. Trofimov and L. S. Cederbaum: 2001. ‘Valence one-electron and shake-up ionization bands of polycyclic aromatic hydrocarbons. I. Benzene, naphthalene, anthracene, naphthacene, and pentacene’. J. Chem. Phys., 115, 5859–5882.

    Article  ADS  Google Scholar 

  • Duflot, D., J. P. Flament, J. Heinesch and M. J. Hubin-Franskin: 2000. ‘Re-analysis of the K-shell spectrum of benzene’. J. Electron Spectrosc., 113, 79–90.

    Article  Google Scholar 

  • Engelke, F.: 1996. Aufbau der Moleküle: Eine Einführung. Leipzig: Teubner, 339 pages.

    Google Scholar 

  • Gelius, U., C. J. Allan, G. Johansson, H. Siegbahn, D. A. Allison and K. Siegbahn: 1971. ‘ESCA spectra of benzene and iso-electronic series, thiophene, pyrrole and furan’. Phys. Scr., 3, 237–242.

    Article  ADS  Google Scholar 

  • Gordon, J. P., H. J. Zeiger and C. H. Townes: 1955. ‘Maser – new type of microwave amplifier, frequency standard, and spectrometer’. Phys. Rev., 99, 1264–1274.

    Article  ADS  Google Scholar 

  • Goss, J. P.: 2009. ‘Point group symmetry’, University of Newcastle upon Tyne, UK. http://www.staff.ncl.ac.uk/j.p.goss/symmetry/index.html, accessed: 9 Jan 2014.

  • van Harrevelt, R. and M. C. van Hemert: 2000. ‘Photodissociation of water. I. Electronic structure calculations for the excited states’. J. Chem. Phys., 112, 5777–5786.

    Article  ADS  Google Scholar 

  • Hashimoto, T., H. Nakano and K. Hirao: 1998. ‘Theoretical study of valence and Rydberg excited states of benzene revisited’. J. Mol. Struct., Theochem, 451, 25–33.

    Article  Google Scholar 

  • Herzberg, G.: 1991. Molecular Spectra and Molecular Structure, vol. II. Infrared and Raman Spectra of Polyatomic Molecules. Malabar: Krieger Publishing Company, 636 pages.

    Google Scholar 

  • HITRAN-Web: 2012. ‘HITRAN on the Web’, Harvard-Smithsonian Center for Astrophysics (CFA), Cambridge, MA, USA, and V.E. Zuev Institute of Atmospheric Optics (IAO), Tomsk, Russia. http://hitran.iao.ru/molecule, accessed: 9 Jan 2014.

  • Immel, S.: 2012. ‘Tutorials’, Darmstadt, Germany: Universität Darmstadt. http://csi.chemie.tu-darmstadt.de/ak/immel/, accessed: 9 Jan 2014.

  • ISO 21348: 2007. ‘Space environment (natural and artificial) – Process for determining solar irradiances’. International Organization for Standardization, Geneva, Switzerland.

    Google Scholar 

  • Jahn, H. A. and E. Teller: 1937. ‘Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy’. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 161, 220–235.

    Article  ADS  Google Scholar 

  • Jmol: 2011. ‘Websites using jmol’, Jmol Community. http://wiki.jmol.org/index.php/Websites_Using_Jmol, accessed: 9 Jan 2014.

  • Jr., R. F. C., H. W. Kroto and R. E. Smalley: 1996. ‘The Nobel prize in chemistry: for their discovery of fullerenes’, Stockholm. http://nobelprize.org/nobel_prizes/chemistry/laureates/1996/.

  • Kramida, A. E., Y. Ralchenko, J. Reader and NIST ASD Team: 2013. ‘NIST Atomic Spectra Database (version 5.1)’. http://physics.nist.gov/asd, accessed: 7 Jan 2014.

  • Medhurst, L. J., T. A. Ferrett, P. A. Heimann, D. W. Lindle, S. H. Liu and D. A. Shirley: 1988. ‘Observation of correlation-effects in zero kinetic-energy electron-spectra near the N 1s-threshold and C 1s-threshold in N2, CO, C6H6, and C2H4’. J. Chem. Phys., 89, 6096–6102.

    Article  ADS  Google Scholar 

  • Mulliken, R. S.: 1955. ‘Report on notation for the spectra of polyatomic molecules (the name of the writer was inadvertently omitted when this report was published)’. J. Chem. Phys., 23, 1997–2011.

    Article  Google Scholar 

  • Mulliken, R. S.: 1966. ‘Nobel lecture: Spectroscopy, molecular orbitals, and chemical bonding’, Stockholm. http://nobelprize.org/nobel_prizes/chemistry/laureates/1966/mulliken-lecture.html.

  • Nash, J. J.: 2004. ‘Visualization and problem solving for general chemistry’, Purdue University, Chemistry Department. http://www.chem.purdue.edu/gchelp/, accessed: 9 Jan 2014.

  • NIST: 2011. ‘Chemistry webbook’. http://webbook.nist.gov/, accessed: 9 Jan 2014.

  • Pauling, L.: 1931. ‘The nature of the chemical bond…’ J. Am. Chem. Soc., 53, 1367–1400.

    Article  Google Scholar 

  • PGOPHER: 2013. ‘A program for simulating rotational structure’, C. M. Western, University of Bristol, UK. http://pgopher.chm.bris.ac.uk, accessed: 9 Jan 2014.

  • Pliva, J., J. W. C. Johns and L. Goodman: 1991. ‘Infrared bands of isotopic benzenes – ν 13 and ν 13 of 13C6D6’. J. Mol. Spectrosc., 148, 427–435.

    Article  ADS  Google Scholar 

  • Rodriguez-Garcia, V., S. Hirata, K. Yagi, K. Hirao, T. Taketsugu, I. Schweigert and M. Tasumi: 2007. ‘Fermi resonance in CO2: A combined electronic coupled-cluster and vibrational configuration-interaction prediction’. J. Chem. Phys., 126, 124303.

    Article  ADS  Google Scholar 

  • Rothman, L. S. et al.: 2009. ‘The HITRAN 2008 molecular spectroscopic database’. J. Quant. Spectrosc. Radiat. Transf., 110, 533–572.

    Article  ADS  Google Scholar 

  • Tachikawa, H.: 2002. ‘Ab initio mo calculations of structures and electronic states of SF6 and \(\mathrm{SF}_{6}^{-}\)’. J. Phys. B, At. Mol. Phys., 35, 5560.

    Google Scholar 

  • Tennyson, J., N. F. Zobov, R. Williamson, O. L. Polyansky and P. F. Bernath: 2001. ‘Experimental energy levels of the water molecule’. J. Phys. Chem. Ref. Data, 30, 735–831.

    Article  ADS  Google Scholar 

  • van Vleck, J. H.: 1951. ‘The coupling of angular momentum vectors in molecules’. Rev. Mod. Phys., 23, 213–227.

    Article  MATH  ADS  Google Scholar 

  • von Niessen, W., L. S. Cederbaum and W. P. Kraemer: 1976. ‘The electronic structure of molecules by a many-body approach. I. Ionization-potentials and one-electron properties of benzene’. J. Chem. Phys., 65, 1378–1386.

    Article  ADS  Google Scholar 

  • Wikipedia contributors: 2013. ‘Molecular symmetry’, Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Molecular_symmetry, accessed: 9 Jan 2014.

  • Wikipedia contributors: 2014. ‘List of character tables for chemically important 3D point groups’, Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/List_of_character_tables_for_chemically_important_3D_point_groups, accessed: 9 Jan 2014.

  • Winter, B., U. Hergenhahn, M. Faubel, O. Björneholm and I. V. Hertel: 2007. ‘Hydrogen bonding in liquid water probed by resonant auger-electron spectroscopy’. J. Chem. Phys., 127, 094501.

    Article  ADS  Google Scholar 

  • Winter, B., R. Weber, W. Widdra, M. Dittmar, M. Faubel and I. V. Hertel: 2004. ‘Full valence band photoemission from liquid water using EUV synchrotron radiation’. J. Phys. Chem. A, 108, 2625–2632.

    Article  Google Scholar 

  • Yachmenev, A., S. N. Yurchenko, I. Paidarova, P. Jensen, W. Thiel and S. P. A. Sauer: 2010. ‘Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: The importance of the large amplitude inversion mode’. J. Chem. Phys., 132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Acronyms and Terminology

AO:

‘Atomic orbital’, single electron wave function in an atom; typically the basis for a rigorous structure calculation.

APES:

‘Adiabatic potential energy surfaces’, potential energy hyper-surface determined in Born-Oppenheimer approximation.

BO:

Born Oppenheimer’, approximation, the basis when solving the Schrödinger equation for molecules (see Sect. 3.2).

E1:

‘Electric dipole’, transitions induced by the interaction of an electric dipole with the electric field component of electromagnetic radiation.

FT:

Fourier transform’, see Appendix I in Vol. 1.

good quantum number:

‘Quantum number for eigenvalues of such observables that may be measured simultaneously with the Hamilton operator (see Sect. 2.6.5 in Vol. 1)’.

HF:

Hartree-Fock’, method (approximation) for solving a multi-electron Schrödinger equation, including exchange interaction.

HITRAN:

High-resolution transmission molecular absorption database’, http://www.cfa.harvard.edu/hitran (Rothman et al. 2009).

HMO:

Hückel molecular orbital method’, approximation for describing molecular orbitals in conjugated hydrocarbon molecules (Sect. 4.5).

HOMO:

‘Highest occupied molecular orbital’.

IP:

‘Ionization potential’, of free atoms or molecules (in solid state physics the equivalent is called “workfunction”).

IR:

‘Infrared’, spectral range of electromagnetic radiation. Wavelengths between \(760\operatorname{nm}\) and \(1\operatorname{mm}\) according to ISO 21348 (2007).

isotopologue:

‘Molecules that differ only in their isotopic composition’, http://en.wikipedia.org/wiki/Isotopologue.

JT:

Jahn and Teller’, have first treated in 1937 the symmetry breaking effect, now referred to by their names.

JTE:

Jahn-Teller effect’, symmetry breaking effect first treated by Jahn and Teller in 1937.

LCAO:

‘Linear combination of atomic orbitals’, linear superposition of atomic, single electron wave functions to form a molecular orbital (MO).

LUMO:

‘Lowest unoccupied molecular orbital’.

MO:

‘Molecular orbital’, single electron wave function in a molecule; typically the basis for a rigorous molecular structure calculation.

PJTE:

‘Pseudo-Jahn-Teller effect’, vibronic coupling for nearly degenerate molecular states, leading to symmetry breaking.

RHF:

‘Restricted Hartree-Fock’, assuming all spatial wave functions in a given closed shell to be equal when computing atomic wave functions.

UV:

‘Ultraviolet’, spectral range of electromagnetic radiation. Wavelengths between \(100\operatorname{nm}\) and \(400\operatorname{nm}\) according to ISO 21348 (2007).

VIS:

‘Visible’, spectral range of electromagnetic radiation. Wavelengths between \(380\operatorname{nm}\) and \(760\operatorname{nm}\) according to ISO 21348 (2007).

VUV:

‘Vacuum ultraviolet’, spectral range of electromagnetic radiation. part of the UV spectral range. Wavelengths between \(10\operatorname{nm}\) and \(200\operatorname{nm}\) according to ISO 21348 (2007).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hertel, I.V., Schulz, CP. (2015). Polyatomic Molecules. In: Atoms, Molecules and Optical Physics 2. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54313-5_4

Download citation

Publish with us

Policies and ethics