Skip to main content

Molecular Imaging Using Magnetic Resonance Spectroscopy in Neurology: The Past, the Present, and the Future

  • Chapter
  • First Online:
PET and SPECT in Neurology
  • 2394 Accesses

Abstract

A description of the principles of nuclear magnetic resonance spectroscopy (MRS), with emphasis on biomedical applications, is followed by a brief summary of the scientific landmarks leading to the development of this method. The main neurological applications up to now are presented: cerebrovascular, white matter and neonatal disorders, epilepsy and oncology. The present state of MRS is represented by providing detail on recent developments such as multivoxel and high-field MRS that facilitate the increasing use of MRS in the study of multiple sclerosis and pediatrics. Future perspectives include the increasing use of shorter echo times for detecting additional metabolites and the study of alternative nuclei, such as carbon-13, facilitated by the stronger signals at higher magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold DL, Shoubridge EA, Villemure JG, Feindel W (1990) Proton and phosphorus magnetic resonance spectroscopy of human astrocytomas in vivo; preliminary observations of tumor grading. NMR Biomed 3:184–189

    Article  CAS  PubMed  Google Scholar 

  • Austin SJ, Connelly A, Gadian DG et al (1991) Localized 1H NMR spectroscopy of Canavan’s disease: a report of two cases. Magn Reson Med 19:439–445

    Article  CAS  PubMed  Google Scholar 

  • Azzopardi D, Wyatt JS, Cady EB et al (1989) Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res 25:445–451

    Article  CAS  PubMed  Google Scholar 

  • Barbiroli B, Montagna P, Cortelli P et al (1990) Complicated migraine studied by phosphorus magnetic resonance spectroscopy. Cephalalgia 10:263–272

    Article  CAS  PubMed  Google Scholar 

  • Barker PB, Gillard JH, van Zijl PCM et al (1994) Acute stroke: evaluation with serial proton MR spectroscopic imaging. Radiology 192:723–732

    CAS  PubMed  Google Scholar 

  • Barker PB, Lee RR, McArthur JC (1995) Aids dementia complex: evaluation with proton MR spectroscopic imaging. Radiology 195:58–64

    CAS  PubMed  Google Scholar 

  • Beckman N, Seelig J, Wick H (1990) Analysis of glycogen storage disease by in vivo 13C NMR: comparison of normal volunteers with a patient. Magn Reson Med 16:150–160

    Article  Google Scholar 

  • Bloch F, Hansen WW, Packerd M (1946) The nuclear induction experiment. Phys Rev 70:474–485

    Article  CAS  Google Scholar 

  • Boesch C, Gruetter R, Martin E et al (1989) Variations in the in vivo 31P MR spectra of the developing human brain postnatal life. Radiology 172:197–199

    CAS  PubMed  Google Scholar 

  • Bottomley PA, Drayer BP, Smith LS (1986) Chronic adult cerebral infarction studied by phosphorus magnetic resonance spectroscopy. Radiology 160:763–766

    CAS  PubMed  Google Scholar 

  • Bowen BC, Block RE, Sanchez-Ramos J et al (1995) Proton MR spectroscopy of the brain in 14 patients with Parkinson disease. AJNR Am J Neuroradiol 16:61–68

    CAS  PubMed  Google Scholar 

  • Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A 79:3523–3526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruhn H, Frahm J, Gyngell ML et al (1989a) Cerebral metabolism in man after acute stroke: new observations using proton MR spectroscopy. Magn Reson Med 9:126–131

    Article  CAS  PubMed  Google Scholar 

  • Bruhn H, Frahm J, Gyngell ML et al (1989b) Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172:541–548

    CAS  PubMed  Google Scholar 

  • Cady EB (1992) MRS on the newborn infant. In: de Certaines JD, Bovée WMMJ, Podo F (eds) Magnetic resonance spectroscopy in biology and medicine. Pergamon Press, Oxford, pp 437–477

    Google Scholar 

  • Cady EB, Costello AM, Dawson MJ et al (1983) Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet I:1059–1062

    Article  Google Scholar 

  • Calvar JA, Meli FJ, Romero C et al (2005) Characterization of brain tumors by MRS, DWI and Ki-67 labeling index. J Neurooncol 72:273–280

    Article  CAS  PubMed  Google Scholar 

  • Cuenod CA, Kaplan DB, Michot JL et al (1995) Phospholipid abnormalities in early Alzheimer’s disease. In vivo phosphorus 31 magnetic resonance spectroscopy. Arch Neurol 52:89–94

    Article  CAS  PubMed  Google Scholar 

  • Duarte JMN, Lei H, Mlymarik V, Gruetter R (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy: review. Neuroimage 61:342–0362

    Article  CAS  PubMed  Google Scholar 

  • Duijn JH, Matson GB, Maudsley AA et al (1992) Human brain infarction: proton MR spectroscopy. Radiology 183:711–718

    CAS  PubMed  Google Scholar 

  • Ebel A, Soher BJ, Maudsley AA (2001) Assessment of 3D proton MR echo-planar spectroscopic imaging using automated spectral analysis. Magn Reson Med 46:1072–1078

    Article  CAS  PubMed  Google Scholar 

  • Fulham MJ, Bizzi A, Dietz MJ et al (1992) Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 185:675–686

    CAS  PubMed  Google Scholar 

  • Geethanath MS et al (2012) Compressive sensing could accelerate 1H MR metabolic imaging in the clinic. Radiology 262:985–994

    Article  PubMed Central  PubMed  Google Scholar 

  • Gill SS, Thomas DGT, Van Bruggen N et al (1990) Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr 14:497–504

    Article  CAS  PubMed  Google Scholar 

  • Grodd W, Krageloh-Mann I, Petersen D et al (1990) In vivo assessment of N-acetylaspartate in brain in spongy degeneration (Canavan’s disease) by proton spectroscopy. Lancet 336:437–438

    Article  CAS  PubMed  Google Scholar 

  • Grodd W, Krageloh-Mann I, Klose U, Sauter R (1991) Metabolic and destructive brain disorders in children: findings with localized proton spectroscopy. Radiology 181:173–181

    CAS  PubMed  Google Scholar 

  • Hagberg G, Burlina AP, Mader I et al (1995) In vivo proton MR spectroscopy of human gliomas: definition of metabolic coordinates for multidimensional classification. Magn Reson Med 34:242–252

    Article  CAS  PubMed  Google Scholar 

  • Henriksen O (1992) MRS of brain. In: de Certaines JD, Bovée WMMJ, Podo F (eds) Magnetic resonance spectroscopy in biology and medicine. Pergamon Press, Oxford, pp 411–435

    Google Scholar 

  • Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16:123–131

    Article  CAS  PubMed  Google Scholar 

  • Kugel H, Heindel W, Ernestus RI et al (1992) Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology 183:701–709

    CAS  PubMed  Google Scholar 

  • Kuzniecky R, Elgavish GA, Hetherington HP et al (1992) In vivo 31P magnetic resonance spectroscopy of human temporal lobe epilepsy. Neurology 42:1586–1590

    Article  CAS  PubMed  Google Scholar 

  • Landtblom AM, Sjöqvist L, Söderfeldt B et al (1996) Proton MR spectroscopy and MR imaging in acute and chronic multiple sclerosis-ringlike appearances in acute plaques. Acta Radiol 37:278–287

    Article  CAS  PubMed  Google Scholar 

  • Lanfermann H, Kugel H, Heindel W et al (1995) Metabolic changes in acute and subacute cerebral infarctions: findings at proton MR spectroscopic imaging. Radiology 196:203–210

    CAS  PubMed  Google Scholar 

  • Larson PEZ, Kerr AB, Reed GD et al (2012) Generating super-stimulated-echoes in MRI and their application to hyperpolarized C-13 diffusion metabolic imaging. IEEE Trans Med Imaging 31:265–275

    Article  PubMed Central  PubMed  Google Scholar 

  • Laubenberger J, Häussinger D, Bayer S et al (1996) HIV-related metabolic abnormalities in the brain: depiction with proton MR spectroscopy with short echo times. Radiology 199:805–810

    CAS  PubMed  Google Scholar 

  • Laxer KD, Hubesch B, Sappey-Marnier D, Weiner MW (1992) Increased pH and anorganic phosphate in temporal seizure foci demonstrated by 31P MRS. Epilepsia 33:618–623

    Article  CAS  PubMed  Google Scholar 

  • Levine SR, Welch KMA, Helpern JA et al (1987) Clinical investigation of ischemic stroke by serial 31-phosphorus NMR spectroscopy. In: Proc Sixth Annual Meeting Soc Magn Reson Med, SMRM, Society for Magnetic Resonance in Medicine (Berkeley, California, USA), p 536

    Google Scholar 

  • Lu D, Pavlakis SG, Frank Y et al (1996) Proton MR spectroscopy of the basal ganglia in healthy children and children with AIDS. Radiology 199:423–428

    CAS  PubMed  Google Scholar 

  • Matthews PM, Francis G, Antel J, Arnold DL (1991) Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis. Neurology 41:1251–1256

    Article  CAS  PubMed  Google Scholar 

  • Matthews VP, Barker PB, Blackband SJ et al (1995) Cerebral metabolites in patients with acute and subacute strokes: concentrations determined by quantitative proton spectroscopy. AJNR Am J Neuroradiol 165:633–638

    Google Scholar 

  • Mikulis DJ, Roberts TPL (2007) Neuro MR: protocols. J Magn Reson Imaging 26:838–847

    Article  PubMed  Google Scholar 

  • Miller BL, Moats RA, Shonk T et al (1993) Alzheimer disease: depiction of increased cerebral myoinositol with proton MR spectroscopy. Radiology 187:433–437

    CAS  PubMed  Google Scholar 

  • Narayana PA, Wolinsky JS, Jackson EF, McCarthy M (1992) Proton MR spectroscopy of gadolinium-enhanced multiple sclerosis plaques. J Magn Reson Imaging 2:263–270

    Article  CAS  PubMed  Google Scholar 

  • Negendank W (1992) Studies of human tumors by MRS; a review. NMR Biomed 3:303–324

    Article  Google Scholar 

  • Negendank WG, Sauter R, Brown TR et al (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84:449–458

    Article  CAS  PubMed  Google Scholar 

  • Ng TC, Comair YG, Xue M et al (1994) Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging. Radiology 193:465–472

    CAS  PubMed  Google Scholar 

  • Otsuki T, Nakama H, Kanamatsu T, Tsukada Y (2005) Glutamate metabolism in epilepsy: 13C-magnetic resonance spectroscopy observation in the human brain. Arch Neurol 16:2057–2060

    CAS  Google Scholar 

  • Otsuki T, Kanamatsu T, Tsukida Y et al (2012) Carbon-13 labeled magnetic resonance spectroscopy observation of cerebral glucose metabolism. Arch Neurol 62:485–487

    Article  Google Scholar 

  • Ott D, Hennig J, Ernst T (1993) Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186:745–752

    CAS  PubMed  Google Scholar 

  • Purcell EM, Torey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in solids. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  • Qiao H, Zhang X, Zhu YH et al (2006) In vivo 31P MRS of human brain at high/ultrahigh fields: a quantitative comparison of NMR detection sensitivity and spectral resolution between 4T and 7T. Magn Reson Imaging 24:1281–1286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rabinov JD, Lee PL, Barker FG et al (2002) In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 225:871–879

    Article  CAS  PubMed  Google Scholar 

  • Rock JP, Hearshen D, Scarpace L et al (2002) Correlation s between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 51:912–920

    PubMed  Google Scholar 

  • Roser W, Hagberg G, Mader I et al (1995) Proton MRS of gadolinium-enhancing MS plaques and metabolic changes in normal appearing white matter. Magn Reson Med 33:811–817

    Article  CAS  PubMed  Google Scholar 

  • Server A, Josefsen R, Kulle B et al (2010) Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors. Acta Radiol 52:316–325

    Article  Google Scholar 

  • Shonk TK, Moats RA, Gifford P et al (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195:65–72

    CAS  PubMed  Google Scholar 

  • Sijens PE (2010) Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors. Acta Radiol 52:316–325, Response to article by Server et al., Acta Radiol 52:326–328

    Google Scholar 

  • Sijens PE, van Dijk P, Oudkerk M (1994) Correlation between choline level and Gd-DTPA enhancement in patients with brain metastases of mammary carcinoma. Magn Reson Med 32:549–555

    Article  CAS  PubMed  Google Scholar 

  • Sijens PE, Knopp MV, Brunetti A (1995a) 1H MR spectroscopy in patients with metastatic brain tumors: a multi-center study. Magn Reson Med 33:818–826

    Article  CAS  PubMed  Google Scholar 

  • Sijens PE, Vecht CJ, Levendag PC et al (1995b) 1H MR spectroscopy follow-up after radiotherapy of human brain cancer: unexpected inverse correlation between the changes in tumor choline level and post-Gd MRI contrast. Invest Radiol 12:738–744

    Article  Google Scholar 

  • Sijens PE, Levendag PC, Vecht CJ et al (1996) 1H MR spectroscopy detection of lipids and lactate in metastatic brain tumors. NMR Biomed 9:65–71

    Article  CAS  PubMed  Google Scholar 

  • Sijens PE, van den Bent MJ, Nowak PJCM et al (1997a) 1H Chemical shift imaging reveals loss of brain tumor choline signal after administration of Gd-contrast agent. Magn Reson Med 37:222–225

    Article  CAS  PubMed  Google Scholar 

  • Sijens PE, van den Bent MJ, Oudkerk M (1997b) Phosphorus (31P) MR spectroscopy of metastatic tumors located in the spine region. Invest Radiol 32:344–350

    Article  CAS  PubMed  Google Scholar 

  • Sijens PE, Oudkerk M, van Dijk P et al (1998) 1H MR spectroscopy monitoring of changes in choline peak area and line shape after Gd-contrast administration. Magn Reson Imaging 16:1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Sijens PE, Mostert JP, Oudkerk M, De Keyser J (2006) 1H MR spectroscopy of the brain in multiple sclerosis subtypes with analysis of the metabolite concentrations in gray and white matter: initial findings. Eur Radiol 16:489–495

    Article  PubMed  Google Scholar 

  • Sijens PE, Heesters MAAM, Enting RH et al (2007) Diffusion tensor imaging and chemical shift imaging assessment of heterogeneity in low grade glioma under temozolomide chemotherapy. Cancer Invest 25:706–710

    Article  CAS  PubMed  Google Scholar 

  • Stamelou M, Pilatus U, Reuss A et al (2009) In vivo evidence for cerebral depletion in high-energy phosphates in progressive supranuclear palsy. J Cereb Blood Flow Metab 29:861–870

    Article  CAS  PubMed  Google Scholar 

  • Sutton LN, Wang Z, Gusnard D (1992) Proton magnetic resonance spectroscopy of pediatric brain tumors. Neurosurgery 31:195–202

    Article  CAS  PubMed  Google Scholar 

  • van der Knaap MS, van der Grond J, van Rijen PC et al (1990) Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 176:509–515

    PubMed  Google Scholar 

  • van Dijk P, Sijens PE, Schmitz PIM, Oudkerk M (1997) Gd-enhanced MR imaging of brain metastases: contrast as a function of dose and treatment time. Magn Reson Imaging 15:535–541

    Article  PubMed  Google Scholar 

  • van Doormaal PJ, Meiners LC, ter Horst HJ et al (2012) The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia. Eur Radiol 22:772–778

    Article  PubMed Central  PubMed  Google Scholar 

  • Varho T, Komu M, Sonninen P et al (2005) Quantitative HMRS and MRI volumetry indicate neuronal damage in the hippocampus in children with focal epilepsy and infrequent seizures. Epilepsia 46:696–703

    Article  PubMed  Google Scholar 

  • Wijtenburg SA, Knight-Scott J (2011) Very short echo time improves the precision of glutamate detection at 3T in 1H magnetic resonance spectroscopy. J Magn Reson Imaging 34:645–652

    Article  PubMed  Google Scholar 

  • Wu WC, Huang CC, Chung HW et al (2005) Hippocampal alterations in children with temporal lobe epilepsy with or without a history of febrile convulsions: evaluations with MR volumetry and proton MR spectroscopy. AJNR Am J Neuroradiol 26:1270–1275

    PubMed  Google Scholar 

  • Xiang Y, Shen J (2012) Spectral editing for in vivo 31C magnetic resonance spectroscopy. J Magn Reson 214:252–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Sijens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sijens, P.E. (2014). Molecular Imaging Using Magnetic Resonance Spectroscopy in Neurology: The Past, the Present, and the Future. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Leenders, K. (eds) PET and SPECT in Neurology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54307-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54307-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54306-7

  • Online ISBN: 978-3-642-54307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics