Skip to main content

Neuroimaging Findings in Mild Cognitive Impairment

  • Chapter
  • First Online:
PET and SPECT in Neurology

Abstract

The clinical construct of mild cognitive impairment (MCI) identifies a syndrome of cognitive deficit without dementia, whose fate is unpredictable without an effort to establish the underlying cause. MCI is the natural “reservoir” of subsequent dementing illnesses, but it can be provoked by a variety of psychiatric and systemic diseases as well as by drugs, alcohol, and substance abuse. In this context, morphological and, especially, functional neuroimaging by means of multitracer SPECT and PET provide clue information on the underlying pathological process. Both MRI and SPECT/PET have been included as biomarkers in the revised criteria for the diagnosis of Alzheimer’s disease before dementia; similarly, dopamine transporter SPECT and FDG-PET are supportive features for the diagnosis of cognitive deficit due to diffuse Lewy-body disease or to frontotemporal lobe degeneration, respectively. The advent of amyloid imaging with PET radiopharmaceuticals has paved the way to the noninvasive brain biopsy for beta amyloid and can detect amyloidosis in otherwise healthy individuals. In the advanced memory clinics, appropriate use of neuroimaging is nowadays the cornerstone of correct diagnosis of cognitive disorders. New developments include high-field MRI equipment, new fluorinated PET radiopharmaceuticals for amyloid detection and receptor studies, and the upcoming tool of MRI-PET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenstein HJ, Nebes RD, Saxton JA et al (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517

    PubMed Central  PubMed  Google Scholar 

  • Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendation from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279

    PubMed Central  PubMed  Google Scholar 

  • Anchisi D, Borroni B, Franceschi F et al (2005) Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol 62:1728–1733

    PubMed  Google Scholar 

  • Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    PubMed  Google Scholar 

  • Barthel H, Gertz HJ, Dresel S et al (2011) Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10:424–435

    CAS  PubMed  Google Scholar 

  • Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25:5–18; author reply 49–62

    CAS  PubMed  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    CAS  PubMed  Google Scholar 

  • Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435–455

    PubMed  Google Scholar 

  • Belleville S, Clement F, Mellah S et al (2011) Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain 134:1623–1634

    PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    CAS  PubMed  Google Scholar 

  • Boeve BF (2012) Mild cognitive impairment associated with underlying Alzheimer’s disease versus Lewy body disease. Parkinsonism Relat Disord 18(Suppl 1):S41–S44

    PubMed  Google Scholar 

  • Bohnen NI, Kaufer DI, Hendrickson R et al (2005) Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:315–319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bookheimer SY, Strojwas MH, Cohen MS et al (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343:450–456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borroni B, Anchisi D, Paghera B et al (2006) Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging 27:24–31

    CAS  PubMed  Google Scholar 

  • Bozoki AC, Korolev IO, Davis NC et al (2012) Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer’s disease: a DTI/FDG-PET study. Hum Brain Mapp 33:1792–1802

    PubMed  Google Scholar 

  • Breiman L (2001) Random forest. Mach Learn 45:5–32

    Google Scholar 

  • Brewer JB, Zhao Z, Desmond JE et al (1998) Making memories: brain activity that predicts how well visual experience will be remembered. Science 281:1185–1187

    CAS  PubMed  Google Scholar 

  • Brun A, Englund E (1986) A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol 19:253–262

    CAS  PubMed  Google Scholar 

  • Brundel M, Heringa SM, de Bresser J et al (2012) High prevalence of cerebral microbleeds at 7 Tesla MRI in patients with early Alzheimer’s disease. J Alzheimer’s Dis 31(2):259–263

    CAS  Google Scholar 

  • Caroli A, Geroldi C, Nobili F et al (2010) Functional compensation in incipient Alzheimer’s disease. Neurobiol Aging 31:387–397

    CAS  PubMed  Google Scholar 

  • Caroli A, Prestia A, Chen K, EADC-PET Consortium, NEST-DD, and Alzheimer’s Disease Neuroimaging Initiative (2012) Summary metrics to assess Alzheimer disease–related hypometabolic pattern with 18F-FDG PET: head-to-head comparison. J Nucl Med 53:1–9

    Google Scholar 

  • Chen K, Ayutyanont N, Langbaum JBS et al (2011) Characterizing Alzheimer’s disease using a hypometabolic convergence index. Neuroimage 56:52–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chincarini A, Bosco P, Calvini P, Alzheimer’s Disease Neuroimaging Initiative et al (2011) Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s disease. Neuroimage 58:469–480

    PubMed  Google Scholar 

  • Chua TC, Wen W, Chen X et al (2009) Diffusion tensor imaging of the posterior cingulate is a useful biomarker of mild cognitive impairment. Am J Geriatr Psychiatry 17:602–613

    PubMed  Google Scholar 

  • Chupin M, Mukuna-Bantumbakulu AR, Hasboun D et al (2007) Automated segmentation of the hippocampus and the amygdala driven by competition and anatomical priors: method and validation on healthy subjects and patients with Alzheimer’s disease. Neuroimage 34:996–1019

    PubMed  Google Scholar 

  • Chupin M, Gérardin E, Cuingnet R, Alzheimer’s Disease Neuroimaging Initiative et al (2009) Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19:579–587

    PubMed Central  PubMed  Google Scholar 

  • Cicerone KD, Langenbahn DM, Braden C et al (2011) Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil 92:519–530

    PubMed  Google Scholar 

  • Cuingnet R, Gerardin E, Tessieras J, Alzheimer’s Disease Neuroimaging Initiative et al (2011) Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56:766–781

    PubMed  Google Scholar 

  • D’Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872

    PubMed  Google Scholar 

  • Darreh-Shori T, Kadir A, Almkvist O et al (2008) Inhibition of acetylcholinesterase in CSF versus brain assessed by 11C-PMP PET in AD patients treated with galantamine. Neurobiol Aging 29:168–184

    CAS  PubMed  Google Scholar 

  • Daselaar SM, Prince SE, Cabeza R (2004) When less means more: deactivations during encoding that predict subsequent memory. Neuroimage 23:921–927

    CAS  PubMed  Google Scholar 

  • Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    PubMed  Google Scholar 

  • Dickerson BC, Salat DH, Greve DN et al (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65:404–411

    CAS  PubMed  Google Scholar 

  • Douaud G, Jbabdi S, Behrens TE et al (2011) DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage 55:880–890

    PubMed  Google Scholar 

  • Drzezga A, Grimmer T, Riemenschneider M et al (2005) Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med 46:1625–1632

    CAS  PubMed  Google Scholar 

  • Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746

    PubMed  Google Scholar 

  • Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127

    PubMed  Google Scholar 

  • Duyn JH, van Gelderen P, Li TQ et al (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci USA 104:11796–11801

    Google Scholar 

  • El Fakhri G, Kijewski MF, Johnson KA et al (2003) MRI-guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease. Arch Neurol 60:1066–1072

    PubMed  Google Scholar 

  • Encinas M, De Juan R, Marcos A et al (2003) Regional cerebral blood flow assessed with 99mTc-ECD SPET as a marker of progression of mild cognitive impairment to Alzheimer’s disease. Eur J Nucl Med Mol Imaging 30:1473–1480

    PubMed  Google Scholar 

  • Engler H, Santillo AF, Wang SX et al (2008) In vivo amyloid imaging with PET in frontotemporal dementia. Eur J Nucl Med Mol Imaging 35:100–106

    PubMed  Google Scholar 

  • Fan Y, Shen D, Gur RC et al (2007) COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans Med Imaging 26:93–105

    PubMed  Google Scholar 

  • Fellgiebel A, Dellani PR, Greverus D et al (2006) Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus. Psychiatry Res 146:283–287

    PubMed  Google Scholar 

  • Forsberg A, Engler H, Almkvist O et al (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29:1456–1465

    CAS  PubMed  Google Scholar 

  • Förster S, Grimmer T, Miederer I et al (2012) Regional expansion of hypometabolism in Alzheimer’s disease follows amyloid deposition with temporal delay. Biol Psychiatry 71:792–797

    PubMed  Google Scholar 

  • Frisoni GB, Scheltens P, Galluzzi S et al (2003) Neuroimaging tools to rate regional atrophy, subcortical cerebrovascular disease, and regional cerebral blood flow and metabolism: consensus paper of the EADC. J Neurol Neurosurg Psychiatry 74:1371–1381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frisoni GB, Ganzola R, Canu E et al (2008) Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla. Brain 131:3266–3276

    PubMed  Google Scholar 

  • Galton C, Gomez-Anson B, Antoun N et al (2001) Temporal lobe rating scale: application to Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 70:165–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garibotto V, Borroni B, Kalbe E et al (2008) Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology 71:1342–1349

    CAS  PubMed  Google Scholar 

  • Gerardin E, Chételat G, Chupin M et al (2009) Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47:1476–1486

    PubMed Central  PubMed  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr et al (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13:2487–2492

    PubMed Central  PubMed  Google Scholar 

  • Greicius MD, Srivastava G, Reiss AL et al (2004) Default- mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642

    Google Scholar 

  • Grimmer T, Riemenschneider M, Förstl H et al (2009) Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry 65:927–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guenther T, Schönknecht P, Becker G et al (2011) Impact of EEG-vigilance on brain glucose uptake measured with [(18)F]FDG and PET in patients with depressive episode or mild cognitive impairment. Neuroimage 56:93–101

    CAS  PubMed  Google Scholar 

  • Habert MO, de Souza LC, Lamari F et al (2010) Brain perfusion SPECT correlates with CSF biomarkers in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 37:589–593

    PubMed  Google Scholar 

  • Haense C, Herholz K, Jagust WJ et al (2009) Performance of FDG-PET for detection of Alzheimer’s disease in two independent multicentre samples (NEST-DD and ADNI). Dement Geriatr Cogn Disord 28:259–266

    CAS  PubMed  Google Scholar 

  • Hämäläinen A, Pihlajamäki M, Tanila H et al (2007) Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 12:1889–1903

    Google Scholar 

  • Hampstead BM, Stringer AY, Stilla RF et al (2011) Activation and effective connectivity changes following explicit-memory training for face-name pairs in patients with mild cognitive impairment: a pilot study. Neurorehabil Neural Repair 25:210–222

    PubMed Central  PubMed  Google Scholar 

  • Hampstead BM, Stringer AY, Stilla RF et al (2012) Mnemonic strategy training partially restores hippocampal activity in patients with mild cognitive impairment. Hippocampus 22:1652–1658

    PubMed Central  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  • He Y, Wang L, Zang Y et al (2007) Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study. Neuroimage 35:488–500

    PubMed  Google Scholar 

  • Herholz K (2003) PET studies in dementia. Ann Nucl Med 17:79–89

    PubMed  Google Scholar 

  • Herholz K, Ebmeier K (2011) Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol 10:667–670

    CAS  PubMed  Google Scholar 

  • Hirao K, Ohnishi T, Hirata Y et al (2005) The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28:1014–1021

    PubMed  Google Scholar 

  • Høgh P, Madsen Sjö N, Gade A et al (2004) Temporal lobe hypoperfusion in isolated amnesia with slow onset: a single photon emission computer tomography study. Dement Geriatr Cogn Disord 18:15–23

    PubMed  Google Scholar 

  • Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223

    CAS  PubMed  Google Scholar 

  • Hua X, Lee S, Yanovsky I, Alzheimer’s Disease Neuroimaging Initiative et al (2009) Optimizing power to track brain degeneration in Alzheimer’s disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects. Neuroimage 48:668–681

    PubMed Central  PubMed  Google Scholar 

  • Huang C, Wahlund LO, Almkvist O et al (2003) Voxel- and VOI-based analysis of SPECT CBF in relation to clinical and psychological heterogeneity of mild cognitive impairment. Neuroimage 19:1137–1144

    CAS  PubMed  Google Scholar 

  • Ishii K, Minoshima S (2005) PET is better than perfusion SPECT for early diagnosis of Alzheimer’s disease – for. Eur J Nucl Med Mol Imaging 32:1463–1465

    PubMed  Google Scholar 

  • Ishiwata A, Sakayori O, Minoshima S et al (2006) Preclinical evidence of Alzheimer changes in progressive mild cognitive impairment: a qualitative and quantitative SPECT study. Acta Neurol Scand 114:91–96

    CAS  PubMed  Google Scholar 

  • Jack CR Jr, Bernstein MA, Fox NC et al (2008a) The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685–691

    PubMed Central  PubMed  Google Scholar 

  • Jack CR Jr, Lowe VJ, Senjem ML et al (2008b) 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131:665–680

    PubMed Central  PubMed  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson SC, Baxter LC, Susskind-Wilder L et al (2004) Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment. Neuropsychologia 42:980–989

    PubMed  Google Scholar 

  • Johnson SC, Schmitz TW, Moritz CH et al (2006) Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging 27:1604–1612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson KA, Moran EK, Becker JA et al (2007) SPECT perfusion differences in mild cognitive impairment. J Neurol Neurosurg Psychiatry 78:240–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juni JE, Waxman AD, Devous MD Sr, Society for Nuclear Medicine et al (2009) Procedure guideline for brain perfusion SPECT using (99 m)Tc radiopharmaceuticals 3.0. J Nucl Med Technol 37:191–195

    PubMed  Google Scholar 

  • Kantarci K, Jack CR Jr, Xu YC et al (2001) Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology 219:101–107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kantarci K, Petersen RC, Boeve BF et al (2005) DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 64:902–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kapucu OL, Nobili F, Varrone A et al (2009) EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2. Eur J Nucl Med Mol Imaging 36:2093–2102

    CAS  PubMed  Google Scholar 

  • Kemppainen NM, Aalto S, Wilson IA et al (2007) PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 68:1603–1606

    CAS  PubMed  Google Scholar 

  • Kendziorra K, Wolf H, Meyer PM et al (2011) Decreased cerebral α4β2 nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer’s disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging 38:515–525

    CAS  PubMed  Google Scholar 

  • Kerchner GA, Hess CP, Hammond-Rosenbluth KE et al (2010) Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI. Neurology 75:1381–1387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim EJ, Cho SS, Jeong Y et al (2005) Glucose metabolism in early onset versus late onset alzheimer’s disease: an SPM analysis of 120 patients. Brain 128:1790–1801

    Google Scholar 

  • Kirchhoff BA, Wagner AD, Maril A et al (2000) Prefrontal-temporal circuitry for episodic encoding and subsequent memory. J Neurosci 20:6173–6180

    CAS  PubMed  Google Scholar 

  • Klöppel S, Stonnington CM, Barnes J et al (2008) Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method. Brain 131:2969–2974

    PubMed Central  PubMed  Google Scholar 

  • Kondo Y, Suzuki M, Mugikura S et al (2005) Changes in brain activation associated with use of a memory strategy: a functional MRI study. Neuroimage 24:1154–1163

    PubMed  Google Scholar 

  • Koulibaly PM, Nobili F, Migneco O et al (2003) 99mTc-HMPAO and 99mTc-ECD perform differently in typically hypoperfused areas in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 30:1009–1013

    CAS  PubMed  Google Scholar 

  • Landau SM, Harvey D, Madison CM et al (2011) Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32:1207–1218

    PubMed Central  PubMed  Google Scholar 

  • Liu Y, Spulber G, Lehtimaki KK et al (2011) Diffusion tensor imaging and tract-based spatial statistics in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 32:1558–1571

    PubMed  Google Scholar 

  • Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357:1003–1037

    PubMed Central  PubMed  Google Scholar 

  • Lopresti BJ, Klunk WE, Mathis CA et al (2005) Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 46:1959–1972

    CAS  PubMed  Google Scholar 

  • Lötjönen J, Wolz R, Koikkalainen J et al (2011) Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer’s disease. Neuroimage 56:185–196

    PubMed Central  PubMed  Google Scholar 

  • Machulda MM, Ward HA, Borowski B et al (2003) Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology 61:500–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magistretti PJ (2000) Cellular bases of functional brain imaging: insights from neuron-glia metabolic coupling. Brain Res 886:108–112

    CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL et al (1999) Energy on demand. Science 283:496–497

    CAS  PubMed  Google Scholar 

  • Magnin B, Mesrob L, Kinkingnéhun S et al (2009) Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51:73–83

    PubMed  Google Scholar 

  • Marques JP, van der Zwaag W, Granziera C et al (2010) Cerebellar cortical layers: in vivo visualization with structural high-field-strength MR imaging. Radiology 254:942–948

    PubMed  Google Scholar 

  • McEvoy LK, Holland D, Hagler DJ Jr, Alzheimer’s Disease Neuroimaging Initiative et al (2011) Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis. Radiology 259:834–843

    PubMed Central  PubMed  Google Scholar 

  • Medina D, DeToledo-Morrell L, Urresta F et al (2006) White matter changes in mild cognitive impairment and AD: a diffusion tensor imaging study. Neurobiol Aging 27:663–672

    PubMed  Google Scholar 

  • Meguro K, Blaizot X, Kondoh Y et al (1999) Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer’s disease. Brain 122:1519–1531

    PubMed  Google Scholar 

  • Miller SL, Fenstermacher E, Bates J et al (2008) Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J Neurol Neurosurg Psychiatry 79:630–635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minoshima S, Frey KA, Koeppe RA et al (1995) A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36:1238–1248

    CAS  PubMed  Google Scholar 

  • Minoshima S, Giordani B, Berent S et al (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94

    CAS  PubMed  Google Scholar 

  • Miotto EC, Savage CR, Evans JJ et al (2006) Bilateral activation of the prefrontal cortex after strategic semantic cognitive training. Hum Brain Mapp 27:288–295

    PubMed  Google Scholar 

  • Morbelli S, Piccardo A, Villavecchia G et al (2010) Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging 37:36–45

    PubMed  Google Scholar 

  • Morbelli S, Drzezga A, Perneczky R et al (2012) Resting metabolic connectivity in prodromal Alzheimer’s disease. An European Alzheimer Disease Consortium (EADC) project. Neurobiol Aging 33:2533–2550. PMID:22365486

    PubMed  Google Scholar 

  • Mormino EC, Kluth JT, Madison CM et al (2009) Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain 132:1310–1323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris JC, Storandt M, Miller JP et al (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405

    CAS  PubMed  Google Scholar 

  • Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32:486–510

    CAS  PubMed  Google Scholar 

  • Mosconi L, De Santi S, Brys M et al (2008) Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biol Psychiatry 63:609–618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moseley ME, Cohen Y, Kucharczyk et al (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445

    CAS  PubMed  Google Scholar 

  • Mueller SG, Schuff N, Yaffe K et al (2010) Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp 31:1339–1347

    PubMed Central  PubMed  Google Scholar 

  • Nobili F, Frisoni GB, Portet F et al (2008a) Brain SPECT in subtypes of mild cognitive impairment. Findings from the DESCRIPA multicenter study. J Neurol 255:1344–1353

    PubMed  Google Scholar 

  • Nobili F, Salmaso D, Morbelli S et al (2008b) Principal component analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging 35:2191–2202

    PubMed  Google Scholar 

  • Nobili F, De Carli F, Frisoni GB et al (2009) SPECT predictors of cognitive decline and Alzheimer’s disease in mild cognitive impairment. J Alzheimers Dis 17:761–772

    PubMed  Google Scholar 

  • Nobili F, Mazzei D, Dessi B et al (2010) Unawareness of memory deficit in amnestic MCI: FDG-PET findings. J Alzheimers Dis 22:993–1003

    PubMed  Google Scholar 

  • Nobili F, Morbelli S, Arnaldi D et al (2011) Radionuclide brain imaging correlates of cognitive impairment in Parkinson’s disease (PD). J Neurol Sci 310(1–2):31–35

    PubMed  Google Scholar 

  • Nordberg A (2011) Molecular imaging in Alzheimer’s disease: new perspectives on biomarkers for early diagnosis and drug development. Alzheimers Res Ther 3:34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nyberg L, Sandblom J, Jones S et al (2003) Neural correlates of training-related memory improvement in adulthood and aging. Proc Natl Acad Sci USA 100:13728–13733

    Google Scholar 

  • O’Dwyer L, Lamberton F, Bokde AL et al (2011) Using diffusion tensor imaging and mixed-effects models to investigate primary and secondary white matter degeneration in Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis 26:667–682

    PubMed  Google Scholar 

  • Obrig H, Neufang M, Wenzel R et al (2000) Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage 12:623–639

    CAS  PubMed  Google Scholar 

  • Oda K, Okubo Y, Ishida R et al (2003) Regional cerebral blood flow in depressed patients with white matter magnetic resonance hyperintensity. Biol Psychiatry 53:150–156

    PubMed  Google Scholar 

  • Ohnishi T, Hoshi H, Nagamachi S et al (1995) High-resolution SPECT to assess hippocampal perfusion in neuropsychiatric diseases. J Nucl Med 36:1163–1169

    CAS  PubMed  Google Scholar 

  • Pagani M, Dessi B, Morbelli S et al (2010) MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res 7:287–294

    CAS  PubMed  Google Scholar 

  • Petersen RC, Negash S (2008) Mild cognitive impairment: an overview. CNS Spectr 13:45–53

    PubMed  Google Scholar 

  • Petersen RC, Smith GE, Waring SC et al (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    CAS  PubMed  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    CAS  PubMed  Google Scholar 

  • Pike KE, Savage G, Villemagne VL et al (2007) Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 130:2837–2844

    PubMed  Google Scholar 

  • Polimeni JR, Fischl B, Greve DN et al (2010) Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52:1334–1346

    PubMed Central  PubMed  Google Scholar 

  • Pontecorvo MJ, Mintun MA (2011) PET amyloid imaging as a tool for early diagnosis and identifying patients at risk for progression to Alzheimer’s disease. Alzheimers Res Ther 3:11

    PubMed Central  PubMed  Google Scholar 

  • Portet F, Ousset PJ, Visser PJ et al (2006) Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. Report of the MCI working group of the European consortium on Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77:714–718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Price CJ, Friston KJ (1999) Scanning patients with tasks they can perform. Hum Brain Mapp 8:102–108

    CAS  PubMed  Google Scholar 

  • Pupi A, Nobili F (2005) PET is better than perfusion SPECT for early diagnosis of Alzheimer’s disease – against. Eur J Nucl Med Mol Imaging 32:1466–1472

    PubMed  Google Scholar 

  • Quigley H, Colloby SJ, O’Brien JT (2011) PET imaging of brain amyloid in dementia: a review. Int J Geriatr Psychiatry 26:991–999

    PubMed  Google Scholar 

  • Rabinovici GD, Jagust WJ (2009) Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo. Behav Neurol 21:117–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raczka KA, Becker G, Seese A et al (2010) Executive and behavioral deficits share common neural substrates in frontotemporal lobar degeneration - a pilot FDG-PET study. Psychiatry Res 182:274–280

    PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    Google Scholar 

  • Reed BR, Eberling JL, Mungas D et al (2004) Effects of white matter lesions and lacunes on cortical function. Arch Neurol 61:1545–1550

    PubMed  Google Scholar 

  • Rodriguez G, Arvigo F, Marenco S et al (1987) Regional cerebral blood flow in essential hypertension: data evaluation by a mapping system. Stroke 18:13–20

    CAS  PubMed  Google Scholar 

  • Rowe CC, Ng S, Ackermann U et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68:1718–1725

    CAS  PubMed  Google Scholar 

  • Ryu EK, Chen X (2008) Development of Alzheimer’s disease imaging agents for clinical studies. Front Biosci 13:777–789

    CAS  PubMed  Google Scholar 

  • Salmon E, Kerrouche N, Perani D et al (2009) On the multivariate nature of brain metabolic impairment in Alzheimer’s disease. Neurobiol Aging 30:186–197

    CAS  PubMed  Google Scholar 

  • Scheltens P, Leys D, Barkhof F et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo SW, Cho SS, Park A et al (2009) Subcortical vascular versus amnestic mild cognitive impairment: comparison of cerebral glucose metabolism. J Neuroimaging 19:213–219

    PubMed  Google Scholar 

  • Sexton CE, Kalu UG, Filippini N et al (2011) A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 32(2322):e5–e18

    PubMed  Google Scholar 

  • Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    PubMed  Google Scholar 

  • Song SK, Sun SW, Ramsbottom MJ et al (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436

    PubMed  Google Scholar 

  • Song SK, Sun SW, Ju WK et al (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:1714–1722

    PubMed  Google Scholar 

  • Sorg C, Riedl V, Mühlau et al (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 104:18760–18765

    Google Scholar 

  • Stenset V, Bjørnerud A, Fjell AM et al (2011) Cingulum fiber diffusivity and CSF T-tau in patients with subjective and mild cognitive impairment. Neurobiol Aging 32:581–589

    PubMed  Google Scholar 

  • Sydykova D, Stahl R, Dietrich O et al (2007) Fiber connections between the cerebral cortex and the corpus callosum in Alzheimer’s disease: a diffusion tensor imaging and voxel-based morphometry study. Cereb Cortex 17:2276–2282

    PubMed  Google Scholar 

  • Thomas BP, Welch EB, Niederhauser BD et al (2008) Creasy high-resolution 7 T MRI of the human hippocampus in vivo. J Magn Reson Imaging 28:1266–1272

    PubMed Central  PubMed  Google Scholar 

  • Thurfjell L, Lötjönen J, Lundqvist R et al (2012) Combination of biomarkers: PET [18 F]flutemetamol imaging and structural MRI in dementia and mild cognitive impairment. Neurodegener Dis 10:246–249

    CAS  PubMed  Google Scholar 

  • Vandenberghe R, Van Laere K, Ivanoiu A et al (2010) 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68:319–329

    PubMed  Google Scholar 

  • Vemuri P, Gunter JL, Senjem ML et al (2008) Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 39:1186–1197

    PubMed Central  PubMed  Google Scholar 

  • Villemagne VA, Klunk WE, Mathis CA et al (2012) Aβ Imaging: feasible, pertinent, and vital to progress in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 39:209–219

    PubMed Central  PubMed  Google Scholar 

  • Visser PJ, Scheltens P, Verhey FRJ et al (1999) Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 246:477–485

    CAS  PubMed  Google Scholar 

  • Wagner AD, Schacter DL, Rotte M et al (1998) Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281:1188–1191

    CAS  PubMed  Google Scholar 

  • Wang H, Su MY (2006) Regional pattern of increased water diffusivity in hippocampus and corpus callosum in mild cognitive impairment. Dement Geriatr Cogn Disord 22:223–229

    PubMed  Google Scholar 

  • Wang L, Zang Y, He Y et al (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31:496–504

    PubMed  Google Scholar 

  • Wang K, Liang M, Wang L et al (2007) Altered functional connectivity in early Alzheimer’s disease: a resting- state fMRI study. Hum Brain Mapp 28:967–978

    PubMed  Google Scholar 

  • Westman E, Muehlboeck JS, Simmons A (2012) Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage 62:229–238

    PubMed  Google Scholar 

  • Wise R, Ide K, Poulin MJ et al (2004) Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in bold signal. Neuroimage 21:1652–1664

    PubMed  Google Scholar 

  • Wolk DA, Price JC, Saxton JA et al (2009) Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 65:557–568

    PubMed Central  PubMed  Google Scholar 

  • Wong DF, Rosenberg PB, Zhou Y et al (2010) In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18 F-AV-45 (florbetapir F 18). J Nucl Med 51:913–920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yacoub E, Harel N, Ugurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA 105:10607–10612

    Google Scholar 

  • Zhang Y, Schuff N, Jahng GH et al (2007) Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology 68:13–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang HY, Wang SJ, Xing J et al (2009) Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer’s disease. Behav Brain Res 197:103–108

    PubMed  Google Scholar 

  • Zhang HY, Wang SJ, Liu B et al (2010) Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology 256:598–606

    PubMed  Google Scholar 

  • Zhang D, Wang Y, Zhou L, Alzheimer’s Disease Neuroimaging Initiative et al (2011) Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55:856–867

    PubMed Central  PubMed  Google Scholar 

  • Zhuang L, Wen W, Zhu W et al (2010) White matter integrity in mild cognitive impairment: a tract-based spatial statistics study. Neuroimage 53:16–25

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Nobili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nobili, F. et al. (2014). Neuroimaging Findings in Mild Cognitive Impairment. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Leenders, K. (eds) PET and SPECT in Neurology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54307-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54307-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54306-7

  • Online ISBN: 978-3-642-54307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics