Skip to main content

Research Background of Total Synthesis of Natural Product Maoecrystal V and Its Family

  • Chapter
  • First Online:
Total Synthesis of (±)-Maoecrystal V

Part of the book series: Springer Theses ((Springer Theses))

  • 556 Accesses

Abstract

Natural products refer to chemical components or metabolites produced by a living organism inside human beings and animals, plants, insects, marine lives and microorganisms (Xu et al Introduction to natural product chemistry, Science Press, Beijing, pp 1–98, 2006 [1]). Natural products are very important for drug discovery, because more than one third of the drugs in current clinical use come directly from natural products or derivatives developed with active ingredients of nature products as the lead compounds. China is famous for its massive land as well as its enrichment in natural product resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu R, Ye Y, Zhao W (2006) Introduction to natural product chemistry, 1st edn. Science Press, Beijing, pp 1–98

    Google Scholar 

  2. Wöhler F (1828) Ueber künstliche bildung des harnstoffe. Pogg Ann Phys Chem 12:253–256

    Article  Google Scholar 

  3. Suh EM, Kishi Y (1994) Synthesis of palytoxin from palytoxin carboxylic acid. J Am Chem Soc 116:11205–11206

    Article  CAS  Google Scholar 

  4. WikiPedia (2012) Vancomycin. http://www.wikipedia.org. Accessed 18 April, 2012

  5. Levine DP (2006) Vancomycin: a history. Clin Infect Dis 42:S5–S12

    Article  CAS  Google Scholar 

  6. Griffith RS (1981) Introduction to vancomycin. Rev Infect Dis 3:200–204

    Article  CAS  Google Scholar 

  7. Xie J, Pierce JG, James RC et al (2011) A redesigned vancomycin engineered for dual D-Ala-D-Ala and D-Ala-D-Lac binding exhibits potent antimicrobial activity against vancomycin-resistant bacteria. J Am Chem Soc 133:13946–13949

    Article  CAS  Google Scholar 

  8. Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley, Weinheim

    Book  Google Scholar 

  9. Maimone TJ, Baran PS (2007) Modern synthetic efforts toward biologically active terpenes. Nat Chem Biol 3:396–407

    Article  CAS  Google Scholar 

  10. Streitwieser AH, Kosower EM (1992) Introduction to organic chemistry. MacMillan Publishing Company, New York

    Google Scholar 

  11. Ruzicka L (1953) The isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357–367

    Article  CAS  Google Scholar 

  12. Fujita E, Node M (1984) Diterpenoids of rabdosia species. Prog Chem Org Nat Prod 46:77–157

    CAS  Google Scholar 

  13. Thurlow KJ (1998) Chemical nomenclature, 1st edn. Kluwer Academic Publisher, Norwell, pp P55–P101

    Book  Google Scholar 

  14. Dewick PM (1995) The biosynthesis of C5–C20 terpenoid compounds. Nat Prod Rep 12:507–534

    Article  CAS  Google Scholar 

  15. Wang L, Zhao WL, Yan JS et al (2007) Eriocalyxin B induces apoptosis of t(8;21) leukemia cells through NF-κB and MAPK signaling pathways and triggers degradation of AML1-ETO oncoprotein in a caspase-3-dependent manner. Cell Death Differ 14:306–317

    Article  Google Scholar 

  16. Sun HD, Xu Y, Jiang B (2001) Diterpenoids of Isodon species, 1st edn. Science Press, Beijing, pp p1–p122

    Google Scholar 

  17. Yu D, Wu Y (2005) Advances in natural product chemistry, 1st edn. Chemical Industry Press, Beijing, pp P1–P155

    Google Scholar 

  18. Sun HD, Li S (2012) Diterpenoids chemistry, 1st edn. Chemical Industry Press, Beijing, pp P1–P89

    Google Scholar 

  19. Li S-H, Wang J, Niu X-M et al (2004) Maoecrystal V, cytotoxic diterpenoid with a novel C19 skeleton from Isodon eriocalyx (Dunn.) Hara. Org Lett 6:4327–4330

    Article  CAS  Google Scholar 

  20. Sun H-D, Huang S-X, Han Q-B (2006) Diterpenoids from Isodon species and their biological activities. Nat Prod Rep 23:673–698

    Article  CAS  Google Scholar 

  21. Shen Y-H, Wen Z-Y, Xu G et al (2005) Cytotoxic ent-kaurane diterpenoids from Isodon eriocalyx. Chem Biodivers 2:1665–1672

    Article  CAS  Google Scholar 

  22. Gong J, Lin G, Li C-C et al (2009) Synthetic study toward the total synthesis of Maoecrystal V. Org Lett 11:4770–4773

    Article  CAS  Google Scholar 

  23. Baran PS, Richter JM (2004) Direct coupling of indoles with carbonyl compounds: short, enantioselective, gram-scale synthetic entry into the hapalindole and fischerindole alkaloid families. J Am Chem Soc 126:7450–7451

    Article  CAS  Google Scholar 

  24. Baran PS, Richter JM, Lin DW (2005) Direct coupling of pyrroles with carbonyl compounds: short enantioselective synthesis of (S)-ketorolac. Angew Chem Int Ed 44:609–612

    Article  CAS  Google Scholar 

  25. Demartino MP, Chen K, Baran PS (2008) Intermolecular enolate heterocoupling: scope, mechanism, and application. J Am Chem Soc 130:11546–11560

    Article  CAS  Google Scholar 

  26. Magdziak D, Meek SJ, Pettus TRR (2004) Cyclohexadienone ketals and quinols: four building blocks potentially useful for enantioselective synthesis. Chem Rev 104:1383–1430

    Article  CAS  Google Scholar 

  27. Pinhey JT (1991) Organolead(IV) tricarboxylates, new reagents for organic synthesis. Aust J Chem 44:1353–1382

    Article  CAS  Google Scholar 

  28. Nicolaou KC, Sun Y-P, Peng X-S et al (2008) Total synthesis of (+)-cortistatin A. Angew Chem Int Ed 47:7310–7313

    Article  CAS  Google Scholar 

  29. Ihara M, Makita K, Tokunaga Y et al (1994) Stereoselective formation of three carbon–carbon bonds by cascade reaction with enolate anion: synthesis of tricyclo [6.2.2.01,6] dodecane and tricyclo [5.3.1.03,8] undecane derivatives. J Org Chem 59:6008–6013

    Article  CAS  Google Scholar 

  30. Liu Z, Meinwald J (1996) 5-(trimethylstannyl)-2H-pyran-2-one and 3-(trimethylstannyl)-2H-pyran-2-one: new 2H-pyran-2-one synthons. J Org Chem 61:6693–6699

    Article  CAS  Google Scholar 

  31. Krawczuk PJ, Schone N, Baran PS (2009) A synthesis of the carbon skeleton of Maoecrystal V. Org Lett 11:4774–4776

    Article  CAS  Google Scholar 

  32. Peng F, Yu M, Danishefsky SJ (2009) Synthetic studies toward Maoecrystal V. Tetrahedron Lett 50:6586–6587

    Article  CAS  Google Scholar 

  33. Peng F, Danishefsky SJ (2011) Toward the total synthesis of Maoecrystal V: an intramolecular Diels–Alder route to the Maoecrystal V pentacyclic core with the appropriate relative stereochemistry. Tetrahedron Lett 52:2104–2106

    Article  CAS  Google Scholar 

  34. Nicolaou KC, Dong L, Deng L et al (2010) Synthesis of functionalized Maoecrystal V core structures. Chem Commun 46:70–72

    Article  CAS  Google Scholar 

  35. Dong L, Deng L, Lim YH et al (2011) Synthesis of an advanced Maoecrystal V core structure. Chem Eur J 17:5778–5781 S5778/5771–S5778/5740

    Article  CAS  Google Scholar 

  36. Singh V, Bhalerao P, Mobin SM (2010) A tandem oxidative dearomatization/intramolecular Diels-Alder reaction: a short and efficient entry into tricyclic system of Maoecrystal V. Tetrahedron Lett 51:3337–3339

    Article  CAS  Google Scholar 

  37. Lazarski KE, Hu DX, Stern CL et al (2010) A synthesis of the carbocyclic core of Maoecrystal V. Org Lett 12:3010–3013

    Article  CAS  Google Scholar 

  38. Baitinger I, Mayer P, Trauner D (2010) Toward the total synthesis of Maoecrystal V: establishment of contiguous quaternary stereocenters. Org Lett 12:5656–5659

    Article  CAS  Google Scholar 

  39. Gu Z, Zakarian A (2011) Studies toward the synthesis of Maoecrystal V. Org Lett 13:1080–1082

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Gong .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gong, J. (2014). Research Background of Total Synthesis of Natural Product Maoecrystal V and Its Family. In: Total Synthesis of (±)-Maoecrystal V. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54304-3_1

Download citation

Publish with us

Policies and ethics