Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1489 Accesses

Abstract

Tensor fields have a wide range of applications outside scientific visualization. In this chapter, we review various types of tensors used in geometry processing, including their properties, application requirements, as well as theoretical and practical results. We will focus on the metric tensor and the curvature tensor, two of the most studied tensors in geometry processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. (SIGGRAPH 2003) 22(3), 485–493 (2003)

    Google Scholar 

  2. Alliez, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’02, San Antonio, pp. 347–354. ACM, New York (2002). doi:10.1145/566570.566588, http://doi.acm.org/10.1145/566570.566588

  3. Cohen-Steiner, D., de Verdière, É.C., Yvinec, M.: Conforming delaunay triangulations in 3d. In: Symposium on Computational Geometry, Barcelona, pp. 199–208 (2002)

    Google Scholar 

  4. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. In: ACM SIGGRAPH 2003 Papers, SIGGRAPH’03, San Deigo, pp. 848–855. ACM, New York (2003). doi:10.1145/1201775.882354, http://doi.acm.org/10.1145/1201775.882354

  5. Delmarcelle, T., Hesselink, L.: The topology of symmetric, second-order tensor fields. In: IEEE Visualization Conference, pp. 140–147 (1994)

    Google Scholar 

  6. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21(3), 209–218 (2002)

    Article  Google Scholar 

  7. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Berlin (2005)

    Google Scholar 

  8. Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica, 1st edn. CRC, Boca Raton (1996)

    Google Scholar 

  9. Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’02, Bristol, pp. 355–361. ACM, New York (2002). doi:10.1145/566570.566589, http://doi.acm.org/10.1145/566570.566589

  10. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: SIGGRAPH, Anaheim, pp. 19–26 (1993)

    Google Scholar 

  11. Hormann, K., Greiner, G.: MIPS: an efficient global parametrization method. In: Laurent, P.J., Sablonnière, P., Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 1999, Innovations in Applied Mathematics, pp. 153–162. Vanderbilt University Press, Nashville (2000)

    Google Scholar 

  12. Interrante, V.: Illustrating surface shape in volume data via principal direction-driven 3d line integral convolution. In: SIGGRAPH’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, pp. 109–116. ACM/Addison-Wesley, New York (1997)

    Google Scholar 

  13. Jobard, B., Lefer, W.: The motion map: efficient computation of steady flow animations. In: IEEE Visualization, Phoenix, pp. 323–328 (1997)

    Google Scholar 

  14. Judd, T., Durand, F., Adelson, E.: Apparent ridges for line drawing. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH’07, San Diego. ACM, New York (2007). doi:10.1145/1275808.1276401, http://doi.acm.org/10.1145/1275808.1276401

  15. Kälberer, F., Nieser, M., Polthier, K.: Quadcover – surface parameterization using branched coverings. Comput. Graph. Forum 26(3), 375–384 (2007)

    Article  MATH  Google Scholar 

  16. Kälberer, F., Nieser, M., Polthier, K.: Stripe parameterization of tubular surfaces. In: Pascucci, V., Hagen, H., Tierny, J., Tricoche, X. (eds.) Topological Methods in Data Analysis and Visualization. Theory, Algorithms, and Applications., Mathematics and Visualization. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  17. Kang, S.B.: A survey of image-based rendering techniques. In: In Videometrics, SPIE, pp. 2–16. Digital, Cambridge Research Laboratory, Cambridge (1999)

    Google Scholar 

  18. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vision Comput. 10, 557–565 (1992)

    Article  Google Scholar 

  19. Kolomenkin, M., Shimshoni, I., Tal, A.: Demarcating curves for shape illustration. In: ACM SIGGRAPH Asia 2008 papers, SIGGRAPH Asia’08, Singapore, pp. 157:1–157:9. ACM, New York (2008). doi:10.1145/1457515.1409110, http://doi.acm.org/10.1145/1457515.1409110

  20. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’02, Bristol, pp. 362–371. ACM, New York (2002). doi:10.1145/566570.566590, http://doi.acm.org/10.1145/566570.566590

  21. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Proc. of the Int. Workshop on Visualization and Mathematics, pp. 35–57 (2002)

    Google Scholar 

  22. Nieser, M., Palacios, J., Polthier, K., Zhang, E.: Hexagonal global parameterization of arbitrary surfaces. IEEE Trans. Vis. Comput. Graph. 18(6), 865–878 (2012). doi:10.1109/TVCG.2011. 118, http://dx.doi.org/10.1109/TVCG.2011.118

  23. Ohtake, Y., Belyaev, A., Seidel, H.P.: Ridge-valley lines on meshes via implicit surface fitting. ACM Trans. Graph. 23(3), 609–612 (2004). doi:10.1145/1015706.1015768, http://doi.acm.org/10.1145/1015706.1015768

  24. Praun, E., Finkelstein, A., Hoppe, H.: Lapped textures. In: SIGGRAPH’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, pp. 465–470. ACM/Addison-Wesley, New York (2000)

    Google Scholar 

  25. Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes. In: Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium, 3DPVT’04, Thessaloniki, pp. 486–493. IEEE Computer Society, Washington (2004). doi:10.1109/3DPVT.2004.54, http://dx.doi.org/10.1109/3DPVT.2004.54

  26. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’01, Los Angeles, pp. 409–416. ACM, New York (2001). doi:10.1145/383259.383307, http://doi.acm.org/10.1145/383259.383307

  27. Sheffer, A., Lévy, B., Mogilnitsky, M., Bogomyakov, A.: Abf++: fast and robust angle based flattening. ACM Trans. Graph. 24(2), 311–330 (2005). doi:10.1145/1061347.1061354, http://doi.acm.org/10.1145/1061347.1061354

  28. Stam, J.: Flows on surfaces of arbitrary topology. ACM Trans. Graph. (SIGGRAPH 2003) 22(3), 724–731 (2003)

    Google Scholar 

  29. Turk, G.: Re-tiling polygonal surfaces. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’92, New York, pp. 55–64. ACM, New York (1992). doi:10.1145/133994.134008, http://doi.acm.org/10.1145/133994.134008

  30. Yan, D.M., Lévy, B., Liu, Y., Sun, F., Wang, W.: Isotropic remeshing with fast and exact computation of restricted voronoi diagram. In: Proceedings of the Symposium on Geometry Processing, SGP’09, Berlin, pp. 1445–1454. Eurographics Association, Aire-la-Ville (2009). http://dl.acm.org/citation.cfm?id=1735603.1735629

  31. Zhang, E., Hays, J., Turk, G.: Interactive tensor field design and visualization on surfaces. IEEE Trans. Vis. Comput. Graph. 13(1), 94–107 (2007)

    Article  Google Scholar 

  32. Zhang, E., Mischaikow, K., Turk, G.: Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24, 1–27 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, E. (2014). Tensors in Geometry Processing. In: Westin, CF., Vilanova, A., Burgeth, B. (eds) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54301-2_13

Download citation

Publish with us

Policies and ethics