Skip to main content

How Ectomycorrhizae Structures Boost the Root System?

  • Chapter
  • First Online:
Root Engineering

Part of the book series: Soil Biology ((SOILBIOL,volume 40))

Abstract

Mycorrhizae are classic examples to explain the mutualistic interaction between two different organisms in nature: the roots of a vascular plant and a fungus. Both species establish a permanent relationship, they live together in symbiosis, and that differentiates the nature of mycorrhizae from other plant–fungus interactions. Ectomycorrhizal associations increase the root exploration area in soil, boosting the potential for mineral nutrition, water availability, and mutual survival of plant and fungus. The diversity of ectomycorrhizal fungal communities in the roots of spermatophyte plants is impressively high and means a complex diversity of structures in the root system, including emanating hyphae and rhizomorphs, which enlarge its area of influence. The distribution of the ectomycorrhizae living in the root system in an ever-changing balance is conditioned by many factors. Some of them are related with the root morphology of the host tree and also with ectomycorrhizal morphology, but abiotic factors (such as soil properties) also play a role.

Knowledge of the distribution and organization of ectomycorrhizal fungal communities in the rhizosphere is still in its infancy. The development of regional models of ectomycorrhizal sporocarp–environment relationships and molecular tools and the study of anato-morphological structures are helping to increase levels of understanding.

Please note the Erratum to this chapter at the end of the book.

The online version of the original chapter can be found under 10.1007/978-3-642-54276-3_23

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-54276-3_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (1987–2012) Colour atlas of ectomycorrhizae: 1st-15th delivery. Einhorn-Verlag, Schwäbisch Gmünd

    Google Scholar 

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ (eds) Methods of microbiology, vol 23. Academic, London, pp 25–73

    Google Scholar 

  • Agerer R (1995) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin, pp 685–734

    Google Scholar 

  • Agerer R (1999) Never change a functionally successful principle: the evolution of Boletales s.l. (Hymenomycetes, Basidiomycota) as seen from below-ground features. Sendtnera 6:5–91

    Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114. doi:10.1007/s005720100108

    Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107. doi:10.1007/s11557-006-0505-x

    Google Scholar 

  • Agerer R, Iosifidou P (2004) Rhizomorph structures of Hymenomycetes: a possibility to test DNA-based phylogenetic hypotheses? In: Agerer R, Pieperbring M, Blanz P (eds) Frontiers in basidiomycote mycology. IHM-Verlag, Eching, pp 249–302

    Google Scholar 

  • Agerer R, Rambold G (2004–2013) [first posted on 2004-06-01; most recent update: 2011-01-10]. DEEMY—an information system for characterization and determination of ectomycorrhizae. München. http://www.deemy.de

  • Águeda B, Parladé J, De Miguel AM, Martínez-Peña F (2006) Characterization and identification of field ectomycorrhizae of Boletus edulis and Cistus ladanifer. Mycologia 98:23–30

    PubMed  Google Scholar 

  • Águeda B, Fernández-Toirán LM, De Miguel AM, Martínez-Peña F (2010) Ectomycorrhizal status of a mature productive black truffle plantation. Forest Syst 19:89–97

    Google Scholar 

  • Alexander SJ, Pilz D, Weber NS, Brown E, Rockwell VA (2002) Value estimates of commercial mushrooms and timber in the Pacific Northwest. Environ Manage 30:129–141

    PubMed  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Alonso Ponce R, Águeda B, Ágreda T, Modrego MP, Aldea J, Martínez-Peña F (2010) Un modelo de potencialidad climática para la trufa negra (Tuber melanosporum) en Teruel (España). Forest Syst 19:208–220

    Google Scholar 

  • Alonso Ponce R, Águeda B, Ágreda T, Modrego MP, Aldea J, Fernández-Toirán LM, Martínez-Peña F (2011) Rockroses and Boletus edulis ectomycorrhizal association: realized niche and climatic suitability in Spain. Fungal Ecol 4:224–232. doi:10.1016/j.funeco.2010.10.002

    Google Scholar 

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    CAS  PubMed  Google Scholar 

  • Arnolds E (1995) Conservation and management of natural populations of edible fungi. Can J Bot 73:987–998

    Google Scholar 

  • Auèina A, Rudawska M, Leski T, Ryliškis D, Pietras M, Piepšas E (2011) Ectomycorrhizal fungal communities on seedlings and conspecific trees of Pinus mugo grown on the coastal dunes of the Curonian Spit in Lithuania. Mycorrhiza 21:237–245. doi:10.1007/s00572-010-0341-3

    Google Scholar 

  • Barroetaveña C, La Manna L, Alonso MV (2008) Variables affecting Suillus luteus fructification in ponderosa pine plantations of Patagonia (Argentina). Forest Ecol Manage 256:1868–1874. doi:10.1016/j.foreco.2008.07.029

    Google Scholar 

  • Benucci GMN, Raggi L, Albertini E, Grebenc T, Bencivenga M, Falcinelli M, di Massimo G (2011) Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: composition, host influence and species replacement. FEMS Microbiol Ecol 76:170–184. doi:10.1111/j.1574-6941.2010.01039.x

    CAS  PubMed  Google Scholar 

  • Bergemann SE, Largent DL (2000) The site specific variables that correlate with the distribution of the Pacific Golden Chanterelle, Cantharellus formosus. Forest Ecol Manage 130:99–107

    Google Scholar 

  • Bertini L, Rossi I, Zambonelli A, Amicucci A, Sacchi A, Cecchini M, Gregori G, Stocchi V (2005) Molecular identification of Tuber magnatum ectomycorrhizae in the field. Microbiol Res 161:59–64

    PubMed  Google Scholar 

  • Bingham MA, Simard SW (2012) Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings. Mycorrhiza 22:317–326. doi:10.1007/s00572-011-0406-y

    PubMed  Google Scholar 

  • Boa E (2004) Wild edible fungi: a global overview of their use and importance to people. FAO, Roma

    Google Scholar 

  • Bonet JA, Palahí M, Colinas C, Pukkala T, Fischer CR, Miina J, Martínez de Aragón J (2010) Modelling the production and species richness of wild edible mushrooms in pine forests of the Central Pyrenees in northeastern Spain. Can J For Res 40:347–356. doi:10.1139/X09-198

    Google Scholar 

  • Bonet JA, de Miguel S, Martínez de Aragón J, Pukkala T, Palahí M (2012) Immediate effect of thinning on the yield of Lactarius group deliciosus in Pinus pinaster forests in Northeastern Spain. Forest Ecol Manage 265:211–217

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73

    CAS  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456. doi:10.1111/j.1469-8137.2009.03003.x

    PubMed  Google Scholar 

  • Buée M, Maurice JP, Zeller B, Andrianarisoa S, Ranger J, Courtecuisse R, Marçais B, Le Tacon F (2011) Influence of tree species on richness and diversity of epigeous fungal communities in a French temperate forest stand. Fungal Ecol 4:22–31. doi:10.1016/j.funeco.2010.07.003

    Google Scholar 

  • Cairney JWG, Burke RM (1986) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ectomycorrhizal symbiosis. New Phytol 134:685–695

    Google Scholar 

  • Cairney JWG, Jennings DH, Agerer R (1991) The nomenclature of fungal multi-hyphal linear aggregates. Cryptogam Bot 2(3):246–251

    Google Scholar 

  • De la Varga H, Águeda B, Martínez-Peña F, Parladé J, Pera J (2012) Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity. Mycorrhiza 22:59–68. doi:10.1007/s00572-011-0382-2

    PubMed  Google Scholar 

  • De la Varga H, Águeda B, Ágreda T, Martínez-Peña F, Parladé J, Pera J (2013) Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain. Mycorrhiza 23:391–402. doi:10.1007/s00572-013-0481-3

    PubMed  Google Scholar 

  • De Román M, Boa E (2006) The marketing of Lactarius deliciosus in Northern Spain. Econ Bot 60:284–290

    Google Scholar 

  • De Román M, De Miguel AM (2005) Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period. Mycorrhiza 15:471–482. doi:10.1007/s00572-005-0353-6

    PubMed  Google Scholar 

  • Díaz-Balteiro L, Álvarez-Nieto A, Oria-de-Rueda JA (2003) Integración de la producción fúngica en la gestión forestal. Aplicación al monte “Urcido” (Zamora). Invest Agr Sist Rec For 121:15–19

    Google Scholar 

  • Dickie IA (2007) Host preference, niches and fungal diversity. New Phytol 174:230–233

    PubMed  Google Scholar 

  • Egli S, Ayer F, Peter M, Eilmann B, Rigling A (2010) Is forest mushroom productivity driven by tree growth? Results from a thinning experiment. Ann For Sci 67:509. doi:10.1051/forest/2010011

    Google Scholar 

  • Erland S, Taylor AFS (2002) Diversity of ecto-mycorrhizal fungal communities in relation to the abiotic environment. In: van der Heijden MGA, Sanders IR (eds) The ecology of mycorrhizas. Springer, Berlin, pp 163–200

    Google Scholar 

  • Fischer CR, Colinas C, Martínez-Peña F, Oliach D (2013) A 10-year review of plant quality and mycorrhizal status for seedlings inoculated with Tuber melanosporum for the establishment of black truffle plantations. In: Proceedings of the 1st international congress of trufficulture, Tuber 2013. Teruel, Spain

    Google Scholar 

  • Frank B (2005) On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of A.B. Frank’s classic paper of 1885). Mycorrhiza 15:267–275. doi:10.1007/s00572-004-0329-y

    CAS  PubMed  Google Scholar 

  • Gachon C, Saindrenan P (2004) Real-time PCR monitoring of fungal development in Arabidopsis thaliana infected by Alternaria brassicicola and Botrytis cinerea. Plant Physiol Biochem 42:367–371

    CAS  PubMed  Google Scholar 

  • García-Barreda S, Reyna S (2012) Below-ground ectomycorrhizal community in natural Tuber melanosporum truffle grounds and dynamics after canopy opening. Mycorrhiza 22:361–369. doi:10.1007/s00572-011-0410-2

    PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583

    Google Scholar 

  • Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390. doi:10.1111/j.1469-8137.2006.01669.x

    PubMed  Google Scholar 

  • Godbout C, Fortin JA (1983) Morphological features of synthesized ectomycorrhizae on Alnus crispa and A. rugosa. New Phytol 94:249–262

    Google Scholar 

  • Gryndler M, Trilčová J, Hršelová H, Streiblová E, Gryndlerová H, Jansa J (2013) Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach. Mycorrhiza 23:341–348. doi:10.1007/s00572-012-0475-6

    PubMed  Google Scholar 

  • Guidot A, Gryta H, Gourbiére F, Debaud JC, Marmeisse R (2002) Forest habitat characteristics affect balance between sexual reproduction and clonal propagation of the ectomycorrhizal mushroom Hebeloma cylindrosporum. Oikos 99:25–36

    Google Scholar 

  • Guidot A, Debaud JC, Effosse A, Marmeisse R (2003) Below-ground distribution and persistence of an ectomycorrhizal fungus. New Phytol 161:539–547. doi:10.1046/j.1469-8137.2003.00945.x

    Google Scholar 

  • Hietala AM, Eikenes M, Kvaalen H, Solheim H, Fossdal CG (2003) Multiplex real-time PCR for monitoring Heterobasidion annosum colonization in Norway spruce clones that differ in disease resistance. Appl Environ Microbiol 69:4413–4420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirose D, Shirouzu T, Tokumasu S (2010) Host range and potential distribution of ectomycorrhizal basidiomycete Suillus pictus in Japan. Fungal Ecol 3:255–260. doi:10.1016/j.funeco.2009.11.001

    Google Scholar 

  • Hortal S, Pera J, Parladé J (2008) Tracking mycorrhizas and extraradical mycelium of the edible fungus Lactarius deliciosus under field competition with Rhizopogon spp. Mycorrhiza 18:69–77

    PubMed  Google Scholar 

  • Hortal S, Pera J, Parladé J (2009) Field persistence of the edible ectomycorrhizal fungus Lactarius deliciosus: effects of inoculation strain, initial colonization level, and site characteristics. Mycorrhiza 19:167–177

    PubMed  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871. doi:10.1046/j.0962-1083.2001.01333.x

    CAS  PubMed  Google Scholar 

  • Horton TR, Hayward J, Tourtellot SG, Taylor DL (2013) Uncommon ectomycorrhizal networks: richness and distribution of Alnus-associating ectomycorrhizal fungal communities. New Phytol 198:978–980

    PubMed  Google Scholar 

  • Hynes MM, Smith ME, Zasoski RJ, Bledsoe CS (2010) A molecular survey of ectomycorrhizal hyphae in a California QuercusPinus woodland. Mycorrhiza 20:265–274. doi:10.1007/s00572-009-0281-y

    CAS  PubMed  Google Scholar 

  • Iotti M, Leonardi M, Oddis M, Salerni E, Baraldi E, Zambonelli A (2012) Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiol 12:93. doi:10.1186/1471-2180-12-93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440

    CAS  PubMed  Google Scholar 

  • Izzo AD, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed conifer forest. New Phytol 166:619–630. doi:10.1111/j.1469-8137.2005.01354.x

    PubMed  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:72–95

    Google Scholar 

  • Jumpponen A, Egerton-Warburton LM (2005) Mycorrhizal fungi in successional environments: a community assembly model incorporating host plant, environmental, and biotic filters. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. Taylor & Francis, Boca Raton, FL, pp 139–168

    Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448. doi:10.1111/j.1469-8137.2009.02990.x

    CAS  PubMed  Google Scholar 

  • Kennedy P (2010) Ectomycorrhizal fungi and interspecific competition: species interactions, community structure, coexistence mechanisms, and future research directions. New Phytol 187:895–910. doi:10.1111/j.1469-8137.2010.03399.x

    PubMed  Google Scholar 

  • Kennedy PG, Hortal S, Bergemann SE, Bruns TD (2007) Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. J Ecol 95:1338–1345. doi:10.1111/j.1365-2745.2007.01306.x

    CAS  Google Scholar 

  • Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology 90:2098–2107

    PubMed  Google Scholar 

  • Kennedy PG, Garibay-Orijel R, Higgins LM, Angeles-Arguiz R (2011a) Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography. Mycorrhiza 21:559–568. doi:10.1007/s00572-011-0366-2

    PubMed  Google Scholar 

  • Kennedy PG, Higgins LM, Rogers RH, Weber MG (2011b) Colonization-competition tradeoffs as a mechanism driving successional dynamics in ectomycorrhizal fungal communities. PLoS One 6:e25126. doi:10.1371/journal.pone.0025126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kjøller R (2006) Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiol Ecol 58:214–224

    PubMed  Google Scholar 

  • Koide RT, Xu B, Sharda J (2005) Contrasting below-ground views of an ectomycorrhizal fungal community. New Phytol 166:251–262. doi:10.1111/j.1469-8137.2004.01313.x

    PubMed  Google Scholar 

  • Koide RT, Sharda JN, Herr JR, Malcom GM (2008) Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytol 178:230–233

    PubMed  Google Scholar 

  • Kües U, Martin F (2011) On the road to understanding truffles in the underground. Fungal Genet Biol 48:555–560. doi:10.1016/j.fgb.2011.02.002

    PubMed  Google Scholar 

  • Laganà A, de Domicis V, Perini C (2003) Influence of forest age on fungal trophic groups in different forest ecosystems (Tuscany-Italy). Cryptogam Mycol 24:359–366

    Google Scholar 

  • Landeweert R, Leeflang P, Kuyper TW, Hoffland E, Rosling A, Wernars K, Smit E (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327–333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alterations of existing ectomycorrhizal communities. New Phytol 171:825–836

    PubMed  Google Scholar 

  • Lilleskov EA, Parrent JL (2007) Can we develop general predictive models of mycorrhizal fungal community–environment relationships? New Phytol 174:250–253

    CAS  PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD, Horton TR, Taylor DL, Grogan P (2004) Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol 49:319–332. doi:10.1016/j.femsec.2004.04.004

    CAS  PubMed  Google Scholar 

  • Malajczuk N, Lapeyrie F, Garbaye J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on the roots of Eucalyptus urophylla in vitro. New Phytol 114:627–631

    Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92. doi:10.1038/nature06556

    CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserrant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038. doi:10.1038/nature08867

    CAS  PubMed  Google Scholar 

  • Martínez de Aragón J, Bonet JA, Fischer CR, Colinas C (2007) Productivity of ectomycorrhizal and selected edible saprotrophic fungi in pine forests of the pre-Pyrenees mountains, Spain: predictive equations for forest management of mycological resources. Forest Ecol Manage 252:239–256. doi:10.1016/j.foreco.2007.06.040

    Google Scholar 

  • Martínez-Peña F, Ágreda T, Águeda B, Ortega-Martínez P, Fernández-Toirán LM (2012) Edible sporocarp production by age class in a Scots pine stand in Northern Spain. Mycorrhiza 22:167–174. doi:10.1007/s00572-011-0389-8

    PubMed  Google Scholar 

  • Massicotte HB, Peterson RL, Ackerley CA, Piché Y (1986) Structure and ontogeny of Alnus crispaAlpova diplophleus ectomycorrhizae. Can J Bot 64:177–192

    Google Scholar 

  • Meyer FH (1973) Distribution of ectomycorrhizae in native and man-made forests. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae. Academic, New York, pp 79–105

    Google Scholar 

  • Molina R, Trappe J (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. Forest Sci 28:423–458

    Google Scholar 

  • Murat C, Díez J, Luis P, Delaruelle C, Dupré C, Chevalier G, Bonfante P, Martin F (2004) Polymorphism at the ribosomal DNA ITS and its relation to postglacial re-colonization routes of the Perigord truffle Tuber melanosporum. New Phytol 164:401–411. doi:10.1111/j.1469-8137.2004.01189.x

    CAS  Google Scholar 

  • Murat C, Vizzini A, Bonfante P, Mello A (2005) Morphological and molecular typing of the below-ground fungal community in a natural Tuber magnatum truffle-ground. FEMS Microbiol Lett 245:307–313

    CAS  PubMed  Google Scholar 

  • Murat C, Mello A, Abbà A, Vizzini A, Bonfante P (2008) Edible mycorrhizal fungi: identification, life cycle and morphogenesis. In: Varma A (ed) Mycorrhiza: genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, pp 707–732

    Google Scholar 

  • Oria-de-Rueda JA, Martín-Pinto P, Olaizola J (2008) Bolete productivity of cistaceous scrublands in Northwestern Spain. Econ Bot 68:323–330

    Google Scholar 

  • Ortega-Martínez P, Águeda B, Fernández-Toirán LM, Martínez-Peña F (2011) Tree age influences on the development of edible ectomycorrhizal fungi sporocarps in Pinus sylvestris stands. Mycorrhiza 21:65–70. doi:10.1007/s00572-010-0320-8

    PubMed  Google Scholar 

  • Palahí M, Pukkala T, Bonet JA, Colinas C, Fischer CR, Martínez de Aragón J (2009) Effect of the inclusion of mushroom values on the optimal management of even-aged pine stands of Catalonia. Forest Sci 55:503–511

    Google Scholar 

  • Parladé J, Hortal S, Pera J, Galipienso L (2007) Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and interspecific competition. J Biotechnol 128:14–23

    PubMed  Google Scholar 

  • Parladé J, de la Varga H, De Miguel AM, Sáez R, Pera J (2013) Quantification of extraradical mycelium of Tuber melanosporum in soils from truffle orchards in northern Spain. Mycorrhiza 23:99–106. doi:10.1007/s00572-012-0454-y

    PubMed  Google Scholar 

  • Peay KG, Bruns T, Kennedy P, Bergemann SE, Garbelotto M (2007) A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 10:470–480

    PubMed  Google Scholar 

  • Peay KG, Bidartondo MI, Arnold AE (2010) Not every fungus is everywhere: scaling to the biogeography of fungal-plant interactions across roots, shoots and ecosystems. New Phytol 185:882–886

    PubMed  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2011) Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecol 4:233–240. doi:10.1016/j.funeco.2010.09.010

    Google Scholar 

  • Peintner U, Iotti M, Klotz P, Bonuso E, Zambonelli A (2007) Soil fungal communities in a Castanea sativa (chestnut) forest producing large quantities of Boletus edulis sensu lato (porcini): where is the mycelium of porcini? Environ Microbiol 9:880–889

    CAS  PubMed  Google Scholar 

  • Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134–1151. doi:10.1139/cjb-79-10-1134

    Google Scholar 

  • Pickles BJ, Genney DR, Potts JM, Lennon JJ, Anderson IC, Alexander IJ (2010) Spatial and temporal ecology of Scots pine ectomycorrhizas. New Phytol 186:755–768. doi:10.1111/j.1469-8137.2010.03204.x

    CAS  PubMed  Google Scholar 

  • Pilz D, Smith J, Amaranthus MP, Alexander S, Molina R, Luoma D (1999) Managing the commercial harvest of the American matsutake and timber in the southern Oregon Cascade Range. J Forest 97:4–11

    Google Scholar 

  • Pinna S, Gévry MF, Côté M, Sirois L (2010) Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. Forest Ecol Manage 260:294–301. doi:10.1016/j.foreco.2010.04.024

    Google Scholar 

  • Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang PH, Matsuda Y, Naadel T, Kennedy PG, Kõljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198:1239–1249. doi:10.1111/nph.12170

    PubMed  Google Scholar 

  • Pritsch K, Becerra A, Põlme S, Tedersoo L, Schloter M, Agerer R (2010) Description and identification of Alnus acuminata ectomycorrhizae from Argentinean alder stands. Mycologia 102:1263–1273. doi:10.3852.09.3.1

    PubMed  Google Scholar 

  • Raidl S (1997) Studien zur Ontogenie an Rhizomorphen von Ektomykorrhizen. Bibliotheca Mycologica 169. Cramer, Berlin Sttutgart

    Google Scholar 

  • Read DJ (1992) The mycorrhizal fungal community with special reference to nutrient mobilization. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystems. Dekker, New York, pp 631–652

    Google Scholar 

  • Reyna S (2012) Sostenibilidad de la Truficultura: aspectos ecológicos, económicos y sociales. In: Reyna S (ed) Truficultura: fundamentos y técnicas, 2nd edn. Mundi-Prensa, Madrid, pp 49–71

    Google Scholar 

  • Rineau F, Maurice JP, Nys C, Voiry H, Garbaye J (2010) Forest liming durably impact the communities of ectomycorrhizas and fungal epigeous fruiting bodies. Ann For Sci 66:110. doi:10.1051/forest/2009089

    Google Scholar 

  • Roy M, Rochet J, Manzi S, Jargeat P, Gryta H, Moreau PA, Gardes M (2013) What determines Alnus-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. New Phytol 198:1228–1238. doi:10.1111/nph.12212

    CAS  PubMed  Google Scholar 

  • Rygiewicz PT, Andersen CP (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369:58–60

    Google Scholar 

  • Salerni E, Laganà A, Perini C, Loppi S, de Domicis V (2002) Effects of temperature and rainfall on fruiting of macrofungi in oak forests of the Mediterranean area. Isr J Plant Sci 50:189–198

    Google Scholar 

  • Savoie JM, Largeteau ML (2011) Production of edible mushrooms in forests: trends in development of a mycosilviculture. Appl Microbiol Biotechnol 89:971–979. doi:10.1007/s00253-010-3022-4

    CAS  PubMed  Google Scholar 

  • Schubert R, Raidl S, Funk R, Bahnweg G, Müller-Starck G, Agerer R (2003) Quantitative detection of agar-cultivated and rhizotron-grown Piloderma croceum Erikss. & Hjortst by ITS1-based fluorescent PCR. Mycorrhiza 13:159–165

    CAS  PubMed  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60. doi:10.1016/j.fbr.2012.01.001

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Suz LM, Martín MP, Oliach D, Fischer CR, Colinas C (2008) Mycelial abundance and other factors related to truffle productivity in Tuber melanosporumQuercus ilex orchards. FEMS Microbiol Lett 285:72–78. doi:10.1111/j.1574-6968.2008.01213.x

    CAS  PubMed  Google Scholar 

  • Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19–28

    CAS  Google Scholar 

  • Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354. doi:10.1111/j.1469-8137.2009.03134.x

    PubMed  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301. doi:10.1111/j.1469-8137.2010.03373.x

    CAS  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170. doi:10.1111/j.1365-294X.2012.05602.x

    PubMed  Google Scholar 

  • Unestam T, Sun YP (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5:301–311

    Google Scholar 

  • van der Linde S, Alexander IJ, Anderson IC (2009) Spatial distribution of sporocarps of stipitate hydnoid fungi and their belowground mycelium. FEMS Microbiol Ecol 69:344–352

    PubMed  Google Scholar 

  • Wallander H, Johansson U, Sterkenburg E, Brandström Durling M, Lindahl BD (2010) Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol 187:1124–1134. doi:10.1111/j.1469-8137.2010.03324.x

    CAS  PubMed  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. doi:10.1007/s00572-005-0033-6

    CAS  PubMed  Google Scholar 

  • Weigt RB, Raidl S, Verma R, Rodenkirchen H, Göttlein A, Agerer R (2011) Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis. Mycorrhiza 21:375–391. doi:10.1007/s00572-010-0343-1

    PubMed  Google Scholar 

  • Weigt RB, Raidl S, Verma R, Agerer R (2012) Exploration type-specific standard values of extramatrical mycelium—a step towards quantifying ectomycorrhizal space occupation and biomass in natural soil. Mycol Prog 11:287–297. doi:10.1007/s11557-011-0750-5

    Google Scholar 

  • Wolfe BE, Richard F, Cross HB, Pringle A (2010) Distribution and abundance of the introduced ectomycorrhizal fungus Amanita phalloides in North America. New Phytol 185:803–816. doi:10.1111/j.1469-8137.2009.03097.x

    PubMed  Google Scholar 

  • Zampieri E, Murat C, Cagnasso M, Bonfante P, Mello A (2010) Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatum truffle ground. FEMS Microbiol Ecol 71:43–49

    CAS  PubMed  Google Scholar 

  • Zampieri E, Rizzello R, Bonfante P, Mello A (2012) The detection of mating type genes of Tuber melanosporum in productive and non productive soils. Appl Soil Ecol 57:9–15. doi:10.1016/j.apsoil.2012.02.013

    Google Scholar 

  • Zhou ZH, Miwa M, Matsuda Y, Hogetsu T (2001) Spatial distribution of the subterranean mycelia and ectomycorrhizae of Suillus grevillei genets. J Plant Res 114:179–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Martínez-Peña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parladé, J., Águeda, B., Fernández-Toirán, L.M., Martínez-Peña, F., de Miguel, A.M. (2014). How Ectomycorrhizae Structures Boost the Root System?. In: Morte, A., Varma, A. (eds) Root Engineering. Soil Biology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54276-3_8

Download citation

Publish with us

Policies and ethics