Skip to main content

Mycorrhizosphere: The Role of PGPR

  • Chapter
  • First Online:
Root Engineering

Part of the book series: Soil Biology ((SOILBIOL,volume 40))

Abstract

The establishment of the arbuscular mycorrhizal (AM) fungus in the root cortex is known to change many key aspects of plant physiology and the mineral nutrient composition in plant tissues, the hormonal balance and the patterns of C allocation. Consequently, AM colonisation induced many plant changes which affect the microbial populations, both quantitatively and qualitatively, in either the rhizosphere or the rhizoplane. However, there are specific modifications in the environment surrounding of the AM extraradical mycelium itself. Thus, the mycorrhizosphere formed around AM plants has features that differ from the rhizosphere of a nonmycorrhizal plant. Bacteria living in the soil root surface or inside cortical cells can interact with AM fungi. The cooperative plant–microbial interactions have focused their attention on plant growth-promoting bacteria (PGPB) and AM fungi and processes involved in the establishment and functioning of the mycorrhizosphere. AM and PGRB inoculation improved plant performance at low levels of nutrients, water potential, at high amount of heavy metals and under diseases caused by pathogenic associations. All the detrimental effects in plants of these stresses can be compensated by specific microbial associations in the mycorrhizosphere based on a range of physiological and cellular mechanisms here reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Latef AA (2010) Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res Commun 38:43–55

    Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12. doi:10.1007/s00253-009-2196-0

    CAS  PubMed  Google Scholar 

  • Aertsen A, Michiels CW (2005) Diversify or die: generation of diversity in response to stress. Crit Rev Microbiol 31:69–78. doi:10.1080.1040841059092.7.8

    PubMed  Google Scholar 

  • Al-Garni SMS (2006) Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. Afr J Biotechnol 5:133–142

    CAS  Google Scholar 

  • Alguacil MM, Hernández JA, Caravaca F, Portillo B, Roldán A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118:562–570

    CAS  Google Scholar 

  • Alguacil MM, Kohler J, Caravaca F, Roldán A (2009a) Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microb Ecol 58:942–951. doi:10.1007/s00248-009-9544-6

    Google Scholar 

  • Alguacil MM, Roldán A, Torres MP (2009b) Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environ Microbiol 11:2649–2659. doi:10.1111/j.1462-2920.2009.01990.x

    CAS  PubMed  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47. doi:10.1007/s005720100098

    CAS  Google Scholar 

  • Amoozegar MA, Hamedi J, Dadashipour M, Shariatpanahi S (2005) Effect of salinity on the tolerance to toxic metals and oxyanions in native moderately halophilic spore-forming bacilli. World J Microbiol Biotechnol 21:1237–1243. doi:10.1007/s11274-005-1804-0

    CAS  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    CAS  Google Scholar 

  • Aroca R, Porcel R, Ruíz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816. doi:10.1111/j.1469-8137.2006.01961.x

    CAS  PubMed  Google Scholar 

  • Artursson V, Finlay DR, Jansson KJ (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    CAS  PubMed  Google Scholar 

  • Asai T (1944) Die bedeutung der mikorrhiza für das pflanzenleben. Jpn J Bot 12:359–408

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979. doi:10.1038/ni1253

    CAS  PubMed  Google Scholar 

  • Azcón R (1987) Germination and hyphal growth of Glomus mosseae in vitro. Effect of rhizosphere bacteria and cell-free culture media. Soil Biol Biochem 19:417–419

    Google Scholar 

  • Azcón R (1993) Growth and nutrition of nodulated mycorrhizal and non-mycorrhizal Hedysarum coronarium as a results of treatments with fractions from a plant growth-promoting rhizobacteria. Soil Biol Biochem 25:1037–1042

    Google Scholar 

  • Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Vienna, pp 237–271

    Google Scholar 

  • Azcón R, Azcón-Aguilar C, Barea JM (1978) Effects of plant hormones present in bacterial cultures on the formation and responses to VA mycorrhiza. New Phytol 80:359–369

    Google Scholar 

  • Azcón R, El-Atrach F, Barea JM (1988) Influence of mycorrhiza vs soluble phosphate on growth, nodulation, and N2 fixation (15N) in Medicago sativa at four salinity levels. Biol Fert Soils 7:28–31

    Google Scholar 

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2 fixation (N15) in Medicago sativa at four salinity levels. New Phytol 117:399–404

    Google Scholar 

  • Azcón R, Ruíz-Lozano JM, Rodríguez R (2001) Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake (N15) under increasing N supply to the soil. Can J Bot 79:1175–1180

    Google Scholar 

  • Azcón R, Medina A, Roldán A, Biró B, Vivas A (2009a) Significance of treated agrowaste residue and autochthonous inoculates (arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate heavy metals contaminated soils. Chemosphere 75:327–334

    PubMed  Google Scholar 

  • Azcón R, Perálvarez MC, Biró B, Roldán A, Ruíz-Lozano JM (2009b) Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Appl Soil Ecol 41:168–177. doi:10.1016/j.apsoil.2008.10.008

    Google Scholar 

  • Azcón R, Perálvarez MC, Roldán A, Barea JM (2010) Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microb Ecol 59:668–677. doi:10.1007/s00248-009-9618-5

    PubMed  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Google Scholar 

  • Azcón-Aguilar C, Azcón R, Barea JM (1979) Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature 279:325–327

    Google Scholar 

  • Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (2009) Mycorrhizas functional processes and ecological impact. Springer, Berlin

    Google Scholar 

  • Babajide PA, Akanbi WB, Alamu LO, Ewetola EA, Olatunji OO (2009) Growth, nodulation and biomass yield of soybean (Glycine max L.) as influenced by bio-fertilizers under simulated eroded soil condition. Res Crops 10:29–34

    Google Scholar 

  • Bakanchikova TI, Lobanok EV, Pavlovaivanova LK, Redkina TV, Nagapetyan JA, Maisuryan AN (1993) Inhibition of tumor formation in dicotyledonous plants by Azospirillum brasilense strains. Microbiology 62:319–323

    Google Scholar 

  • Barea JM (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. In: Stewart BA (ed) Advances in soil science, vol 7. Springer, New York, pp 1–40

    Google Scholar 

  • Barea JM, Azcón-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. In: Brady N (ed) Advances in agronomy, vol 36. Academic, New York

    Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1987) Vesicular-arbuscular mycorrhiza improve both symbiotic N2-fixation and N uptake from soil as assessed with a 15N technique under field conditions. New Phytol 106:717–725

    CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (1989) Time-course of N2 fixation (15N) in the field by clover growing alone or in mixture with ryegrass to improve pasture productivity, and inoculated with vesicular-arbuscular mycorrhizal fungi. New Phytol 112:399–404

    Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002) The application of isotopic (P32 and N15) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott LK, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005a) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin

    Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005b) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  PubMed  Google Scholar 

  • Barea JM, Werner D, Azcón-Aguilar C, Azcón R (2005c) Interactions of arbuscular mycorrhiza and nitrogen fixing symbiosis in sustainable agriculture. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, Netherlands

    Google Scholar 

  • Barea JM, Toro M, Azcón R (2007) The use of 32P isotopic dilution techniques to evaluate the interactive effects of phosphate-solubilizing bacteria and mycorrhizal fungi at increasing plant P availability. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization, Developments in plant and soil sciences. Springer, Dordrecht, pp 223–227

    Google Scholar 

  • Barea JM, Ferrol N, Azcón-Aguilar C, Azcón R (2008) Mycorrhizal symbioses. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions, vol 7, Plant ecophysiology. Springer, Dordrecht, pp 143–163

    Google Scholar 

  • Bashan Y, de-Bashan LE (2002a) Reduction of bacterial speck (Pseudomonas syringae pv. tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemo-thermal seed treatment. Eur J Plant Pathol 108:821–829. doi:10.1023/a:1021274419518

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2002b) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68:2637–2643. doi:10.1128/aem.68.6.2637-2643.2002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bashan Y, Alcaraz-Meléndez L, Toledo G (1992) Responses of soybean and cowpea root membranes to inoculation with Azospirillum brasilense. Symbiosis 13:217–228

    Google Scholar 

  • Bashan Y, Salazar B, Puente ME (2009) Responses of native legume desert trees used for reforestation in the Sonoran Desert to plant growth-promoting microorganisms in screen house. Biol Fert Soils 45:655–662. doi:10.1007/s00374-009-0368-9

    Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495. doi:10.1093/jxb/erm010

    CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423. doi:10.1111/j.1469-8137.2008.02657.x

    CAS  PubMed  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Stafford AE (1985) Glycine-glomus rhizobium symbiosis. II. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol 79:1054–1058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:306–317. doi:10.1111/j.1365-313X.2011.04496.x

    CAS  PubMed  Google Scholar 

  • Bisht R, Chaturvedi S, Srivastava R, Sharma AK, Johri BN (2009) Effect of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Rhizobium leguminosarum on the growth and nutrient status of Dalbergia sissoo Roxb. Trop Ecol 50:231–242

    CAS  Google Scholar 

  • Blaha G, Stelzl U, Spahn CMT, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol 317:292–309

    CAS  PubMed  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880. doi:10.1007/s00253-006-0731-9

    CAS  PubMed  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Google Scholar 

  • Bryla DR, Duniway JM (1997) Water uptake by safflower and wheat roots infected with arbuscular mycorrhizal fungi. New Phytol 136:591–601

    Google Scholar 

  • Burleigh SH, Bechmann IE (2002) Plant nutrient transporter regulation in arbuscular mycorrhizas. Plant Soil 244:247–251. doi:10.1023/a:1020227232140

    CAS  Google Scholar 

  • Burleigh SH, Kristensen BK, Bechmann IE (2003) A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol 52:1077–1088. doi:10.1023/a:1025479701246

    CAS  PubMed  Google Scholar 

  • Campos-Soriano L, García-Martínez J, San Segundo B (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592. doi:10.1111/j.1364-3703.2011.00773.x

    CAS  PubMed  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    CAS  Google Scholar 

  • Caravaca F, Alguacil MM, Azcón R, Díaz G, Roldán A (2004) Comparing the effectiveness of mycorrhizal inoculation and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L. Appl Soil Ecol 25:169–180. doi:10.1016/j.apsoil.2003.08.002

    Google Scholar 

  • Caravaca F, Tortosa G, Carrasco L, Cegarra J, Roldán A (2006) Interaction between AM fungi and a liquid organic amendment with respect to enhancement of the performance of the leguminous shrub Retama sphaerocarpa. Biol Fert Soils 43:30–38. doi:10.1007/s00374-005-0058-1

    Google Scholar 

  • Cassan F, Bottini R, Schneider G, Piccoli P (2001) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA(20) and metabolize the resultant aglycones to GA(1) in seedlings of rice dwarf mutants. Plant Physiol 125:2053–2058. doi:10.1104/pp. 125.4.2053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J Microbiol Biotechnol 25:1919–1928

    Google Scholar 

  • Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46:186–195. doi:10.1002/jobm.200510050

    CAS  PubMed  Google Scholar 

  • Charudhry T, Hayes W, Khan A, Khoo C (1998) Phytoremediation-focusing on accumulator plants that remediate metal-contaminated soils. Aust J Ecotoxicol 4:37–51

    Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215. doi:10.1104/pp. 125.3.1206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    CAS  PubMed  Google Scholar 

  • Cornelis P, Matthisj S (2007) Pseudomonas siderophores and their biological significance. In: Ajit V, Chincholkar S (eds) Microbial siderophores, Soil biology. Springer, Berlin, pp 193–203

    Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin—novel structure of an iron-chelating growth promoter for pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260. doi:10.1073/pnas.78.7.4256

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811. doi:10.1016/j.femsre.2004.11.005

    PubMed  Google Scholar 

  • Díaz G, Azcón-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241–249

    Google Scholar 

  • Dimkpa C, Svatos A, Merten D, Buechel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172. doi:10.1139/w07-130

    CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Buechel G, Kothe E (2009a) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162. doi:10.1016/j.soilbio.2008.10.010

    CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Buechel G, Kothe E (2009b) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696. doi:10.1111/j.1365-2672.2009.04355.x

    CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009c) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. doi:10.1111/j.1365-3040.2009.02028.x

    CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, van de Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–165

    CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280. doi:10.1093/aob/mcp251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126. doi:10.1093/jxb/ern059

    CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    CAS  PubMed  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119. doi:10.1016/j.goederma.2004.01.002

    CAS  Google Scholar 

  • Galleguillos C, Aguirre C, Barea JM, Azcón R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63

    CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria, a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • García-Garrido JM, Lendzemo V, Castellanos-Morales V, Steinkellner S, Vierheilig H (2009) Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza 19:449–459. doi:10.1007/s00572-009-0265-y

    PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Tollot M, Seddas PMA (2009) Dissection of genetic cell programmes driving early arbuscular mycorrhiza interactions. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas functional processes and ecological impact. Springer, Berlin

    Google Scholar 

  • Glick BR (1995) The enhancement of plant-growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Goellner K, Conrath U (2008) Priming: it’s all the world to induced disease resistance. Eur J Plant Pathol 121:233–242. doi:10.1007/s10658-007-9251-4

    Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    PubMed  Google Scholar 

  • Goicoechea N, Szalai G, Antolín MC, Sánchez-Díaz M, Paldi E (1998) Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol 153:706–711

    CAS  Google Scholar 

  • Gómez-Gómez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7:251–256. doi:10.1016/s1360-1385(02)02261-6, Pii s1360-1385(02)02261-6

    PubMed  Google Scholar 

  • González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    PubMed  Google Scholar 

  • González-Guerrero M, Benabdellah K, Ferrol N, Azcón-Aguilar C (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas functional processes and ecological impact. Springer, Berlin

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53. doi:10.1016/s0168-1656(00)00270-4

    CAS  PubMed  Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DDJ (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht

    Google Scholar 

  • Gryndler M, Hrselova H, Cajthaml T, Havrankova M, Rezacova V, Gryndlerova H, Larsen J (2009) Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza 19:255–266. doi:10.1007/s00572-008-0217-y

    PubMed  Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134. doi:10.1186/1471-2229-9-134

    PubMed Central  PubMed  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327. doi:10.1007/s11104-009-0255-z

    CAS  Google Scholar 

  • Hamdia ABE, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102. doi:10.1023/a:1005703923347

    CAS  Google Scholar 

  • Hassouna MG, El-Saedy MAM, Saleh HMA (1998) Biocontrol of soil-borne plant pathogens attacking cucumber (Cucumis sativus) by rhizobacteria in a semiarid environment. Arid Soil Res Rehabil 12:345–357

    CAS  Google Scholar 

  • He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 59:128–133

    CAS  PubMed  Google Scholar 

  • Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938. doi:10.1111/j.1462-2920.2007.01309.x

    CAS  PubMed  Google Scholar 

  • Jaderlund L, Arthurson V, Granhall U, Jansson JK (2008) Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett 287:174–180. doi:10.1111/j.1574-6968.2008.01318.x

    PubMed  Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza—a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The mycota, vol IX, Fungal associations. Springer, Berlin

    Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369. doi:10.1104/pp. 126.4.1358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi:10.1038/nature05286

    CAS  PubMed  Google Scholar 

  • Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262. doi:10.1146/annurev.phyto.45.062806.094411

    CAS  PubMed  Google Scholar 

  • Jung HW, Kim W, Hwang BK (2003) Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ 26:915–928. doi:10.1046/j.1365-3040.2003.01024.x

    CAS  PubMed  Google Scholar 

  • Kapoor R, Bhatnagar AK (2007) Attenuation of cadmium toxicity in mycorrhizal celery (Apium graveolens L.). World J Microbiol Biotechnol 23:1083–1089. doi:10.1007/s11274-006-9337-8

    CAS  Google Scholar 

  • Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236. doi:10.1146/annurev.ecolsys.39.110707.173423

    Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, Zehnder GW, Murphy JF, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soil-borne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26. doi:10.1071/ap99003

    Google Scholar 

  • Knipfer T, Fricke W (2014) Root aquaporins. In: Morte A, Varma A (eds) Root engineering. Springer, Heidelberg

    Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    PubMed  Google Scholar 

  • Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biol 7:206. doi:10.1186/gb-2006-7-2-206

    PubMed Central  PubMed  Google Scholar 

  • Kucey RMN, Janzen HH, Leggett ME (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228

    CAS  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207. doi:10.1111/j.1469-8137.2008.02630.x

    CAS  PubMed  Google Scholar 

  • Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser Verlag, Basel

    Google Scholar 

  • Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, Zhu YG (2007) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481. doi:10.1007/s10653-007-9116-y

    CAS  PubMed  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora. The mycorrhizosphere effects. Phytopathology 78:366–371

    Google Scholar 

  • Liu J, He D, Ma X, Wu H, Gao X (2011) Identification of up-regulated genes of Bacillus amyloliquefaciens B55 during the early stage of direct surface contact with rice R109 root. Curr Microbiol 62:267–272. doi:10.1007/s00284-010-9701-7

    CAS  PubMed  Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidative defense system, pigment composition and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3:e2702. doi:10.1371/journal.pone.0002702

    PubMed Central  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918

    CAS  PubMed  Google Scholar 

  • Lugtenberg B, van der Bij A, Bloemberg G, Woeng TCA, Dekkers L, Kravchenko L, Mulders I, Phoelich C, Simons M, Spaink H, Tikhonovich I, de Weger L, Wijffelman C (1996) Molecular basis of rhizosphere colonization by Pseudomonas bacteria. In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant-microbe interactions. International Soc Molecular Plant-Microbe Interactions, St Paul, MN

    Google Scholar 

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96. doi:10.1111/j.1365-3040.2004.01295.x

    CAS  Google Scholar 

  • Maggio A, Joly RJ (1995) Effects of mercuric-chloride on the hydraulic conductivity of tomato root systems—evidence for a channel-mediated water pathway. Plant Physiol 109:331–335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malekzadeh E, Alikhani HA, Savaghebi-Firoozabadi GR, Zarei M (2011) Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils. Span J Agric Res 9:1213–1223

    Google Scholar 

  • Mallik MAB, Williams RD (2008) Plant growth promoting rhizobacteria and mycorrhizal fungi in sustainable agriculture and forestry. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer, New York

    Google Scholar 

  • Markmann K, Parniske M (2009) Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends Plant Sci 14:77–86. doi:10.1016/j.tplants.2008.11.009

    CAS  PubMed  Google Scholar 

  • Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:497–506. doi:10.1371/journal.pbio.0060068

    CAS  Google Scholar 

  • Marschner P (2008) The role of rhizosphere microorganisms in relation to P uptake by plants. In: White PJ, Hammond J (eds) The ecophysiology of plant-phosphorus interactions, vol 7, Plant ecophysiology. Springer, Dordrecht

    Google Scholar 

  • Märtensson AM (1992) Effects of agrochemicals and heavy metals on fast-growing rhizobia and their symbiosis with small-seeded legumes. Soil Biol Biochem 24:435–445. doi:10.1016/0038-0717(92)90206-d

    Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678. doi:10.1007/s00248-006-9078-0

    CAS  PubMed  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552. doi:10.1007/s00248-007-9237-y

    CAS  PubMed  Google Scholar 

  • Marulanda A, Azcón R, Ruíz-Lozano JM, Aroca R (2008) Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus coinoculated: physiologic and biochemical traits. J Plant Growth Regul 27:10–18. doi:10.1007/s00344-007-9024-5

    Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments. Mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530. doi:10.1016/j.plantsci.2003.10.025

    CAS  Google Scholar 

  • Medina A, Azcón R (2010) Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. J Soil Sci Plant Nutr 10:354–372

    Google Scholar 

  • Medina A, Azcón R (2012) Reclamation strategies of semiarid mediterranean soil: improvement of the efficiency of arbuscular mycorrhizal fungi by inoculation of plant growth promoting microorganisms and organic amendments. In: Hafidi M, Duponnois R (eds) The mycorrhizal symbiosis in mediterranean environment: importance in ecosystem stability and in soil rehabilitation strategies. Nova Science Publishers, New York

    Google Scholar 

  • Medina A, Probanza A, Manero FJG, Azcón R (2003) Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl Soil Ecol 22:15–28

    Google Scholar 

  • Medina A, Vassileva M, Caravaca F, Roldán A, Azcón R (2004) Improvement of soil characteristics and growth of Dorycnium pentaphyllum by amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarrowia lipolytica. Chemosphere 56:449–456

    CAS  PubMed  Google Scholar 

  • Meyer JM, Azelvandre P, Georges C (1992) Iron-metabolism in Pseudomonas: salicylic-acid, a siderophore of Pseudomonas fluorescens CHAO. Biofactors 4:23–27

    CAS  PubMed  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. doi:10.1128/mmbr.00012-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monzón A, Azcón R (1996) Relevance of mycorrhizal fungal origin and host plant genotype to inducing growth and nutrient uptake in Medicago species. Agric Ecosyst Environ 60:9–15

    Google Scholar 

  • Moran JF, Becana M, Iturbeormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea-plants. Planta 194:346–352

    CAS  Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027. doi:10.1016/j.soilbio.2007.11.014

    CAS  Google Scholar 

  • Morton JB (2009) Reconciliation of conflicting phenotypic and rRNA gene phylogenies of fungi in glomeromycota based on underlying patterns and processes. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas functional processes and ecological impact. Springer, Berlin

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163

    CAS  PubMed  Google Scholar 

  • Mut P, Bustamante C, Martinez G, Alleva K, Sutka M, Civello M, Amodeo G (2008) A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry (Fragaria x ananassa) fruit ripening. Physiol Plant 132:538–551. doi:10.1111/j.1399-3054.2007.01046.x

    CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149. doi:10.1139/w07-081

    CAS  PubMed  Google Scholar 

  • Naseby DC, Lynch JM (1997) Rhizosphere soil enzymes as indicators of perturbations caused by enzyme substrate addition and inoculation of a genetically modified strain of Pseudomonas fluorescens on wheat seed. Soil Biol Biochem 29:1353–1362

    CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439. doi:10.1126/science.1126088

    CAS  PubMed  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199. doi:10.1007/bf01569902

    CAS  PubMed  Google Scholar 

  • Nishimura K, Igarashi K, Kakinuma Y (1998) Proton gradient-driven nickel uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae. J Bacteriol 180:1962–1964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mader P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268. doi:10.1016/j.agee.2009.07.008

    Google Scholar 

  • Öpik M, Moora M, Zobel M, Saks U, Wheatley R, Wright F, Daniell T (2008a) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876

    PubMed  Google Scholar 

  • Öpik M, Saks Ü, Kennedy J, Daniell T (2008b) Global diversity patterns of arbuscular mycorrhizal fungi-community composition and links with functionality. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Berlin

    Google Scholar 

  • Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na +/H + transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186

    CAS  Google Scholar 

  • Pagano MC, Cabello MN, Bellote AF, Sa NM, Scotti MR (2008) Intercropping system of tropical leguminous species and Eucalyptus camaldulensis, inoculated with rhizobia and/or mycorrhizal fungi in semiarid Brazil. Agrofor Syst 74:231–242. doi:10.1007/s10457-008-9177-7

    Google Scholar 

  • Paleg LG, Stewart GR, Bradbeer JW (1984) Proline and glycine betaine Influence protein solvation. Plant Physiol 75:974–978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parniske M (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 7:414–421

    CAS  PubMed  Google Scholar 

  • Paszkowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses 2006. New Phytol 172:35–46

    CAS  PubMed  Google Scholar 

  • Paulsen IT, Saier MH (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103. doi:10.1007/s002329900192

    CAS  PubMed  Google Scholar 

  • Pedraza RO, Motok J, Tortora ML, Salazar SM, Diaz-Ricci JC (2007) Natural occurrence of Azospirillum brasilense in strawberry plants. Plant Soil 295:169–178. doi:10.1007/s11104-007-9273-x

    CAS  Google Scholar 

  • Pedraza RO, Motok J, Salazar SM, Ragout AL, Mentel MI, Tortora ML, Guerrero-Molina MF, Winik BC, Diaz-Ricci JC (2010) Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World J Microbiol Biotechnol 26:265–272. doi:10.1007/s11274-009-0169-1

    Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316. doi:10.1038/nchembio.164

    CAS  PubMed  Google Scholar 

  • Pishchik VN, Vorobyev NI, Chernyaeva II, Timofeeva SV, Kozhemyakov AP, Alexeev YV, Lukin SM (2002) Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243:173–186. doi:10.1023/a:1019941525758

    CAS  Google Scholar 

  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90. doi:10.1007/s00572-008-0205-2

    PubMed  Google Scholar 

  • Porcel R, Ruíz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750. doi:10.1093/jxb/erh188

    CAS  PubMed  Google Scholar 

  • Porcel R, Barea JM, Ruíz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105. doi:10.1016/j.tplants.2007.01.004

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. doi:10.1016/j.pbi.2007.05.004

    CAS  PubMed  Google Scholar 

  • Pozo M, Van Loon L, Pieterse C (2004) Jasmonates—signals in plant-microbe interactions. J Plant Growth Regul 23:211–222. doi:10.1007/bf02637262

    CAS  Google Scholar 

  • Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2009) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas functional processes and ecological impact. Springer, Berlin

    Google Scholar 

  • Pozo MJ, Jung SC, López-Ráez JA, Azcón-Aguilar C (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotec stress: the role of plant defence mechanisms. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Netherlands, pp 193–207. doi:10.1007/978-90-481-9489-6_3

    Google Scholar 

  • Provorov NA, Vorobyov NI (2009) Interspecies altruism in plant-microbe symbioses: use of group selection models to resolve the evolutionary paradoxes. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas functional processes and ecological impact. Springer, Heidelberg

    Google Scholar 

  • Querejeta JI, Allen MF, Alguacil MM, Roldán A (2007) Plant isotopic composition provides insight into mechanisms underlying growth stimulation by AM fungi in a semiarid environment. Funct Plant Biol 34:683–691. doi:10.1071/fp07061

    CAS  Google Scholar 

  • Rajkumar M, Lee KJ, Lee WH, Banu JR (2005) Growth of Brassica juncea under chromium stress: influence of siderophores and indole 3 acetic acid producing rhizosphere bacteria. J Environ Biol 26:693–699

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2008) Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48:500–508. doi:10.1002/jobm.200800073

    CAS  PubMed  Google Scholar 

  • Ramos-Solano R, Pereyra de la Iglesia MT, Probanza A, Lucas-Garcia JA, Megias M, Mañero-Gutierrez FJ (2006) Screening for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded mediterranean ecosystems. Plant Soil 287:59–68. doi:10.1007/s11104-006-9055-x

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    CAS  PubMed  Google Scholar 

  • Redon PO, Beguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195. doi:10.1007/s00572-009-0230-9

    CAS  PubMed  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi:10.1007/s11104-009-9895-2

    CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    CAS  PubMed  Google Scholar 

  • Rincón A, Valladares F, Gimeno TE, Pueyo JJ (2008) Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol 28:1693–1701

    PubMed  Google Scholar 

  • Rinu K, Pandey A (2009) Bacillus subtilis NRRL B-30408 inoculation enhances the symbiotic efficiency of Lens esculenta Moench at a Himalayan location. J Plant Nutr Soil Sci 172:134–139. doi:10.1002/jpln.200800153

    CAS  Google Scholar 

  • Romero AM, Correa OS, Moccia S, Rivas JG (2003) Effect of Azospirillum-mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. J Appl Microbiol 95:832–838. doi:10.1046/j.1365-2672.2003.02053.x

    CAS  PubMed  Google Scholar 

  • Rosendahl S, McGee P, Morton JB (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18:4316–4329. doi:10.1111/j.1365-294X.2009.04359.x

    PubMed  Google Scholar 

  • Ruíz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    PubMed  Google Scholar 

  • Ruíz-Lozano JM, Aroca R (2008) Last insights into the role of aquaporins in the alleviation of osmotic stress by arbuscular mycorrhizal symbiosis. In: Van Dijk T (ed) Microbial ecology research trends. Nova Science Publishers, New York, pp 139–154

    Google Scholar 

  • Ruíz-Lozano JM, Aroca R (2010) Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function, 2nd edn. Springer Science + Business Media B.V, Dordrecht

    Google Scholar 

  • Ruíz-Lozano JM, Azcón R (1993) Specificity and functional compatibility of VA mycorrhizal endophytes in association with Bradyrhizobium strains in Cicer arietinum. Symbiosis 15:217–226

    Google Scholar 

  • Ruíz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Google Scholar 

  • Ruíz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Google Scholar 

  • Ruíz-Lozano JM, Azcón R, Gómez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    Google Scholar 

  • Ruíz-Lozano JM, Porcel R, Aroca R (2008) Evaluation of the possible participation of drought-induced genes in the enhanced tolerance of arbuscular mycorrhizal plants to water deficit. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, pp 185–205

    Google Scholar 

  • Ruíz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044. doi:10.1093/jxb/ers126

    PubMed  Google Scholar 

  • Ruíz-Sánchez M, Aroca R, Munoz Y, Polon R, Ruíz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869. doi:10.1016/j.jplph.2010.01.018

    PubMed  Google Scholar 

  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319. doi:10.1016/j.jbiotec.2008-01-020

    CAS  PubMed  Google Scholar 

  • Saccardy K, Pineau B, Roche O, Cornic G (1998) Photochemical efficiency of Photosystem II and xanthophyll cycle components in Zea mays leaves exposed to water stress and high light. Photosynth Res 56:57–66

    CAS  Google Scholar 

  • Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245–254. doi:10.1104/pp. 109.145854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos-González JC, Finlay RD, Tehler A (2007) Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl Environ Microbiol 73:5613–5623. doi:10.1128/aem.00262-07

    PubMed Central  PubMed  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292. doi:10.1111/j.1365-2672.2006.03179.x

    CAS  PubMed  Google Scholar 

  • Sarig S, Okon Y, Blum A (1992) Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots. J Plant Nutr 15:805–819

    Google Scholar 

  • Sayyed RZ, Chincholkar SB (2009) Siderophore-producing Alcaligenes faecalis exhibited more biocontrol potential vis-à-vis chemical fungicide. Curr Microbiol 58:47–51

    CAS  PubMed  Google Scholar 

  • Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh B (2004) Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma 223:183–189. doi:10.1007/s00709-003-0027-1

    CAS  PubMed  Google Scholar 

  • Schüßler A, Gehrig H, Schwarzott D, Walker C (2001) Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res 105:5–15

    Google Scholar 

  • Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228

    CAS  PubMed  Google Scholar 

  • Shao H-B, Chu L-Y, Lu Z-H, Kang C-M (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    CAS  PubMed Central  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296. doi:10.1007/s00572-008-0180-7

    CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430. doi:10.1007/s00572-010-0353-z

    PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York

    Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358. doi:10.1111/j.1469-8137.2008.02753.x

    CAS  PubMed  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris) involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–89. doi:10.1034/j.1399-3054.1992.850113.x

    CAS  Google Scholar 

  • Souchie EL, Azcón R, Barea JM, Saggin-Júnior OJ, Ribeiro da Silva EM (2007) Indolacetic acid production by P-solubilizing microorganisms and interaction with arbuscular mycorrhizal fungi. Acta Sci Biol Sci 29:315–320

    CAS  Google Scholar 

  • Sudhakar P, Gangwar SK, Satpathy B, Sahu PK, Ghosh JK, Saratchandra B (2000) Evaluation of some nitrogen fixing bacteria for control of foliar diseases of mulberry (Morus Alba). Indian J Seric 39:9–11

    Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202. doi:10.1139/w07-082

    CAS  PubMed  Google Scholar 

  • Tabak H, Lens P, van Hullebusch E, Dejonghe W (2005) Development in bioremediation of soils and sediments polluted with metals and radionuclides—1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4:115–156

    CAS  Google Scholar 

  • Talaat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291. doi:10.1002/jpln.201000051

    CAS  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959. doi:10.1094/mpmi.1999.12.11.951

    CAS  PubMed  Google Scholar 

  • Tobar RM, Azcón R, Barea JM (1994a) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol 126:119–122

    Google Scholar 

  • Tobar RM, Azcón R, Barea JM (1994b) The improvement of plant N acquisition from an ammonium-treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza 4:105–108

    Google Scholar 

  • Toljander JF, Santos-González JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol 65:323–338. doi:10.1111/j.1574-6941.2008.00512.x

    CAS  PubMed  Google Scholar 

  • Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (P32) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toro M, Azcón R, Barea JM (1998) The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    CAS  Google Scholar 

  • Tortora M, Díaz-Ricci JC, Pedraza R (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286. doi:10.1007/s00203-010-0672-7

    CAS  PubMed  Google Scholar 

  • Turnau K, Jurkiewicz A, Língua G, Barea JM, Gianinazzi-Pearson V (2006) Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. biogeochemistry, biotechnology and bioremediation. CRC, Boca Raton, FL

    Google Scholar 

  • Uyanoz R, Akbulut M, Cetin U, Gultepe N (2007) Effects of microbial inoculation, organic and chemical fertilizer on yield and physicochemical and cookability properties of bean (Phaseolus vulgaris L.) seeds. Philipp Agric Sci 90:168–172

    Google Scholar 

  • Valdenegro M, Barea JM, Azcón R (2001) Influence of arbuscular-mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for re-vegetation and biological reactivation in a semi-arid mediterranean area. Plant Growth Regul 34:233–240

    CAS  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338. doi:10.1016/s0168-6445(02)00114-6, Pii s0168-6445(02)00114-6

    CAS  PubMed  Google Scholar 

  • Van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CMJ, Ton J (2009) Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation. New Phytol 183:419–431. doi:10.1111/j.1469-8137.2009.02851.x

    PubMed  Google Scholar 

  • van Loon WKP, de Kreuk MK, Hamelers HVM, Bot GPA (1998) Water regulated air flow controller for permeability measurements. In: Farkas I (ed) Control applications in post-harvest and processing technology. International Federation of Automatic Control by Pergamon, Oxford

    Google Scholar 

  • van Wees SCM, van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448. doi:10.1016/j.pbi.2008.05.005

    PubMed  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908. doi:10.1094/mpmi.2004.17.8.895

    CAS  PubMed  Google Scholar 

  • Vessey KV (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2004) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp and cycads. Plant Soil 266:205–230

    CAS  Google Scholar 

  • Visca P, Ciervo A, Sanfilippo V, Orsi N (1993) Iron-regulated salicylate synthesis by Pseudomonas spp. J Gen Microbiol 139:1995–2001

    CAS  PubMed  Google Scholar 

  • Vivas A, Azcón R, Biró B, Barea JM, Ruíz-Lozano JM (2003a) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49:577–588

    CAS  PubMed  Google Scholar 

  • Vivas A, Biró B, Campos E, Barea JM, Azcón R (2003b) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189

    CAS  PubMed  Google Scholar 

  • Vivas A, Vörös A, Biró B, Barea JM, Ruíz-Lozano JM, Azcón R (2003c) Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Appl Soil Ecol 24:177–186

    Google Scholar 

  • Vivas A, Barea JM, Azcón R (2005a) Brevibacillus brevis isolated from cadmium- or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn concentrations. Microb Ecol 49:416–424. doi:10.1007/s00248-004-0044-4

    CAS  PubMed  Google Scholar 

  • Vivas A, Barea JM, Azcon R (2005b) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134:257–266. doi:10.1016/j.envpol.2004.07.029

    CAS  PubMed  Google Scholar 

  • Vivas A, Biró B, Nemeth T, Barea JM, Azcón R (2006a) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704. doi:10.1016/j.soilbio.2006.04.020

    CAS  Google Scholar 

  • Vivas A, Biró B, Ruíz-Lozano JM, Barea JM, Azcón R (2006b) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533

    CAS  PubMed  Google Scholar 

  • Vörös I, Biró B, Takács T, Köves-Péchy K, Bujtás K (1998) Effect of arbuscular mycorrhizal fungi on heavy metal toxicity to Trifolium pratense in soils contaminated with Cd, Zn and Ni salts. Agrokém Talaj 47:277–288

    Google Scholar 

  • Weissenhorn I, Leyval C (1995) Root colonization of maize by a Cd sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175:233–238

    CAS  Google Scholar 

  • Werner M, Uehlein N, Proksch P, Kaldenhoff R (2001) Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite Cuscuta reflexa. Planta 213:550–555

    CAS  PubMed  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227. doi:10.1139/b04-082

    Google Scholar 

  • Willems A (2007) The taxonomy of rhizobia: an overview. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization, Developments in plant and soil sciences. Springer, Dordrecht

    Google Scholar 

  • Yasuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599

    CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Inmunol Hung 56:263–284. doi:10.1556/AMicr.56.2009.3.6

    CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513. doi:10.1080.0190416080189.0.7

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Azcón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Azcón, R. (2014). Mycorrhizosphere: The Role of PGPR. In: Morte, A., Varma, A. (eds) Root Engineering. Soil Biology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54276-3_6

Download citation

Publish with us

Policies and ethics