Skip to main content

The Development of the Maize Root System: Role of Auxin and Ethylene

  • Chapter
  • First Online:
Root Engineering

Part of the book series: Soil Biology ((SOILBIOL,volume 40))

Abstract

The maize primary root is a cylindrical structure formed by consecutive zones: (a) the root apex contains the apical meristem, where cell divisions occur; (b) the elongation zone in which cells stop dividing and start to elongate; and (c) the maturation zone, where cells reach their definitive lengths, cell differentiation begins, and lateral roots initiate. In the root, three main tissue systems can be distinguished: the epidermis, the cortex, and the vascular cylinder. The first layer of the vascular cylinder is the pericycle. Cell cycle activation in pericycle cells is clearly connected with lateral root initiation.

Root grows basically by the elongation of its cells and branches through proliferation of pericycle founder cells. Auxin is the main hormone in regulating these both processes. Exogenous auxin inhibits root growth, increases transversal expansion, and enhances lateral root formation. As auxin also enhances ethylene production, it is difficult to know whether certain auxin effects are mediated by ethylene or not. Based on own results and on the specialized literature, we discussed on regulation by auxin and ethylene of the development of the maize root system. The emerging model is that auxin and ethylene regulate root elongation depending on concentration and that both regulators interact to regulate root growth. The role of auxin in regulating lateral root formation is clearly established. However, ethylene does not seem to have such a direct role in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indole acetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J Biol Chem 270:19093–19099

    CAS  PubMed  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic, New York

    Google Scholar 

  • Alarcón MV, Lloret-Salamanca A, Lloret PG, Iglesias DJ, Talón M, Salguero J (2009) Effects of antagonists and inhibitors of ethylene biosynthesis on maize root elongation. Plant Signal Behav 4:1154–1156

    PubMed Central  PubMed  Google Scholar 

  • Alarcón MV, Lloret PG, Iglesias DJ, Talón M, Salguero J (2012) Comparison of growth responses to auxin 1-naphthaleneacetic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid in maize seedling root. Acta Biol Crac 54:1–8

    Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (1996) Specialized zones of development in roots: View from the cellular level. Plant Physiol 112:3–4

    PubMed Central  PubMed  Google Scholar 

  • Barlow PW (1984) Positional controls in root development. In: Barlow PW, Carr DJ (eds) Positional controls in plant development. Cambridge University Press, Cambridge, UK, pp 281–318

    Google Scholar 

  • Barlow PW (1987) Cellular packets, cell division and morphogenesis in the primary root meristem of Zea mays L. New Phytol 105:27–56

    Google Scholar 

  • Baskin TI (2000) On the constancy of cell division rate in the root meristem. Plant Mol Biol 43:545–554

    CAS  PubMed  Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    CAS  PubMed  Google Scholar 

  • Baskin TI, Williamson RE (1992) Ethylene, microtubules and root morphology in wild-type and mutant Arabidopsis seedlings. Curr Top Plant Biochem Physiol 11:118–130

    CAS  Google Scholar 

  • Baum SF, Karanastasis L, Rost TL (1998) Morphogenetic effect of the herbicide cinch on Arabidopsis thaliana root development. J Plant Growth Regul 17:107–114

    CAS  Google Scholar 

  • Beemster GTS, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–1526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beemster GTS, Baskin TI (2000) STUNTED PLANT 1 mediates effects of cytokinin, but not of auxin, on cell division and expansion in the root of arabidopsis. Plant Physiol 124:1718–1727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beemster GTS, Fiorani F, Inzé D (2003) Cell cycle: the key to plant growth control? Trends Plant Sci 8:154–158

    CAS  PubMed  Google Scholar 

  • Bell JK, McCully ME (1970) A histological study of lateral root initiation and development in Zea mays. Protoplasma 70:179–205

    Google Scholar 

  • Bergfeld R, Speth V, Schopfer P (1988) Reorientation of microfibrils and microtubules at the outer epidermal wall of maize coleoptiles during auxin-mediated growth. Bot Acta 101:57–67

    CAS  Google Scholar 

  • Blakely LM, Rodaway SJ, Hollen LB, Crocker SG (1972) Control and kinetics of branch root formation in cultured root segments of Haplopappus ravenii. Plant Physiol 50:35–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blakely LM, Durham M, Evans TA, Blakely RM (1982) Experimental studies on lateral root formation in radish seedling roots. I. General methods, developmental stages, and spontaneous formation of laterals. Bot Gaz 143:341–352

    Google Scholar 

  • Blancaflor EB, Hasenstein KH (1997) The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize. Plant Physiol 113:1447–1455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Desitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inzé D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonfante P, Peretto R (1993) Cell-wall separation during the outgrowth of lateral roots in Allium porrum L. Acta Bot Neer 42:187–197

    Google Scholar 

  • Bonnett HT Jr, Torrey JG (1966) Comparative anatomy of endogenous bud and lateral root formation in Convolvulus arvensis roots cultured in vitro. Am J Bot 53:496–507

    Google Scholar 

  • Buer CS, Wasteneys GO, Masle J (2003) Ethylene modulates root-wave responses in Arabidopsis. Plant Physiol 132:1085–1096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic response in roots of Arabidopsis. Plant Physiol 140:1384–1396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burström HG, Svensson SB (1974) Hormonal regulation of root development. In: Kolek J (ed) Structure and function of primary root tissues. Veda Publishing House of the Slovak Academy of Sciences, Bratislava, pp 121–135

    Google Scholar 

  • Casero PJ, Casimiro I, Lloret PG (1995) Lateral root initiation by asymmetrical transverse divisions of pericycle cells in four plant species: Raphanus sativus, Helianthus annuus, Zea mays, and Daucus carota. Protoplasma 188:49–58

    Google Scholar 

  • Casimiro I, Calvo V, Marchant A, Bennett M, Casero PJ (1999) NPA reduces cell elongation and lateral root development in Arabidopsis thaliana. II Congress of the Spanish Society of Developmental Biology. Barcelona, Spain

    Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckmann T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang HM, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    CAS  PubMed  Google Scholar 

  • Celenza JL, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142

    CAS  PubMed  Google Scholar 

  • Chang SC, Kim YS, Lee JY, Kaufman PB, Kirakosyan A, Yun HS, Kim TW, Kim SY, Cho MH, Lee JS, Kim SK (2004) Brassinolide interacts with auxin and ethylene in the root gravitropic response of maize (Zea mays). Physiol Plant 121:666–673

    CAS  Google Scholar 

  • Clarkson DT, Robards AW (1975) The endodermis, its structural development and physiological role. In: Torrey JG, Clarkson DT (eds) The development and functions of roots. Academic, London, pp 415–437

    Google Scholar 

  • Cleland RE (1992) Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima. Plant Physiol 99:1556–1561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clowes FAL (1958) Development of quiescent centres in root meristems. New Phytol 57:85–88

    Google Scholar 

  • Clowes FAL (1978) Chimeras and the origin of lateral root primordia in Zea mays. Ann Bot 42:801–807

    Google Scholar 

  • Clowes FAL (1994) Origin of the epidermis in root meristems. New Phytol 127:335–347

    Google Scholar 

  • Corti-Monzón G, Pinedo M, Lamattina L, de la Canal L (2012) Sunflower root growth regulation: the role of jasmonic acid and its relation with auxins. Plant Growth Regul 66:129–136

    Google Scholar 

  • Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    CAS  PubMed  Google Scholar 

  • De Cnodder T, Vissenberg K, Van Der Straeten D, Verbelen JP (2005) Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid: a matter of apoplastic reactions. New Phytol 168:541–550

    PubMed  Google Scholar 

  • De Smet I, Jürgens G (2007) Patterning the axis in plants-auxin in control. Curr Opin Genet Dev 17:337–343

    PubMed  Google Scholar 

  • Díez JL, de la Torre C, López-Sáez JF (1971) Auxin deficiency at the onset of root growth in Allium cepa. Planta 97:364–366

    PubMed  Google Scholar 

  • Dinh PTY, Roldan M, Leung S, McManus MT (2012) Regulation of root growth by auxin and ethylene is influenced by phosphate supply in white clover (Trifolium repens L.). Plant Growth Regul 66:179–190

    CAS  Google Scholar 

  • Dubrovsky JG, Doerner PW, Colón-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol 124:1648–1657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dugardeyn J, Van Der Straeten D (2008) Ethylene: inhibitor and stimulator of plant growth. In: Bögre L, Beemster G (eds) Plant growth signaling (Plant Cell Monographs, 10). Springer, Heidelberg, pp 199–221

    Google Scholar 

  • Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–675

    CAS  PubMed  Google Scholar 

  • Eliasson L, Bollmark M (1988) Ethylene as a possible mediator of light-induced inhibition of root growth. Physiol Plant 72:605–609

    CAS  Google Scholar 

  • Eliasson L, Bertell G, Bolander E (1989) Inhibitory action of auxin on root elongation not mediated by ethylene. Plant Physiol 91:310–314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enstone DE, Peterson CA, Ma FS (2002) Root endodermis and exodermis: Structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    CAS  Google Scholar 

  • Erdelska O, Vidovencova Z (1993) Development of adventitious seminal root primordia of maize during embryogenesis. Biologia 48:85–88

    Google Scholar 

  • Evans ML, Mulkey TJ, Vesper MJ (1980) Auxin action on proton influx in corn roots and its correlation with growth. Planta 148:510–512

    CAS  PubMed  Google Scholar 

  • Evans ML, Ishikawa H, Estelle MA (1994) Responses of Arabidopsis roots to auxin studied with high temporal resolution: Comparison of wild type and auxin-response mutants. Planta 194:215–222

    CAS  Google Scholar 

  • Feldman LJ (1994) The maize root. In: Freeling M, Walbot V (eds) The Maize Handbook. Springer, New York, pp 29–37

    Google Scholar 

  • García-Sánchez C, Casero PJ, Lloret PG, Navascués J (1991) Morphological changes and transversal growth kinetics along the apical meristem in the pericycle cell types of the onion adventitious root. Protoplasma 160:108–114

    Google Scholar 

  • Gou JQ, Strauss SH, Tsai CJ, Fang K, Chen YR, Jiang XN, Busov VB (2010) Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22:623–639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Green PB (1984) Analysis of axis extension. In: Barlow PW, Carr DJ (eds) Positional controls in plant development. Cambridge University Press, Cambridge, UK, pp 53–82

    Google Scholar 

  • Guo DL, Liang JH, Li L (2009) Abscisic acid (ABA) inhibition of lateral root formation involves endogenous ABA biosynthesis in Arachis hypogaea L. Plant Growth Regul 58:173–179

    CAS  Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hetz W, Hochholdinger F, Schwall M, Feix G (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J 10:845–857

    CAS  Google Scholar 

  • Hinchee MAW, Rost TL (1986) The control of lateral root development in cultured pea seedlings. I. The role of seedling organs and plant growth regulators. Bot Gaz 147:137–147

    CAS  Google Scholar 

  • Hobbie L, Estelle M (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J 7:211–220

    CAS  PubMed  Google Scholar 

  • Hochholdinger F, Woll D, Sauer M, Debmbinsky D (2004) Genetic dissection of root formation in maize (Zea mays) reveals root-type specific development programmes. Ann Bot 93:359–368

    CAS  PubMed  Google Scholar 

  • Ishikawa H, Evans ML (1993) The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol 102:1203–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa H, Evans MI (1995) Specialized zones of development in roots. Plant Physiol 109:725–727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347

    CAS  PubMed  Google Scholar 

  • Ivanov VB (1997) Relationship between cell proliferation and transition to elongation in plant roots. Int J Dev Biol 41:907–915

    CAS  PubMed  Google Scholar 

  • Jackson MB (1991) Ethylene in root growth and development. In: Matoo AK, Suttle JC (eds) The Plant Hormone Ethylene. CRC Press, Boca Raton, FL, pp 159–181

    Google Scholar 

  • Joo S, Seo YS, Kim SM, Hong DK, Park KY, Kim WT (2006) Brassinosteroids induction of AtACS4 encoding auxin-responsive 1-aminocyclopropane-1-carboxylate synthase 4 in Arabidopsis seedlings. Physiol Plant 126:592–604

    CAS  Google Scholar 

  • Keller B, Lamb CJ (1989) Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Dev 3:1639–1646

    CAS  PubMed  Google Scholar 

  • Kerk NM, Feldman LJ (1995) A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems. Development 121:2825–2833

    CAS  Google Scholar 

  • Kerk NM, Jiang KN, Feldman LJ (2000) Auxin metabolism in the root apical meristem. Plant Physiol 122:925–932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann NL (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev 1:86–96

    CAS  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310

    CAS  PubMed  Google Scholar 

  • Lee JS, Chang WK, Evans ML (1990) Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. Plant Physiol 94:1770–1775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li JS, Dai XH, Zhao YD (2006a) A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol 140:899–908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Mo X, Shou H, Wu P (2006b) Cytokinin mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47:1112–1123

    CAS  PubMed  Google Scholar 

  • Lloret PG, Casero PJ (2002) Lateral root initiation. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Dekker, New York, pp 127–155

    Google Scholar 

  • Lloret PG, Pulgarín A (1992) Effect of naphthaleneacetic acid on the formation of lateral roots in the adventitious root of Allium cepa: number and arrangement of laterals along the parent root. Can J Bot 70:1891–1896

    CAS  Google Scholar 

  • Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol 131:1381–1390

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacIsaac SA, Sawhney VK, Pohorecky Y (1989) Regulation of lateral root formation in lettuce (Lactuca sativa) seedling roots: Interacting effects of α-naphthaleneacetic acid and kinetin. Physiol Plant 77:287–293

    CAS  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    CAS  PubMed  Google Scholar 

  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    CAS  PubMed  Google Scholar 

  • Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW (1996) The homeobox gene GLABRA 2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122:1253–1260

    CAS  PubMed  Google Scholar 

  • McDavid CR, Sagar GR, Marshall C (1972) The effect of auxin from the shoot on root development in Pisum sativum L. New Phytol 71:1027–1032

    CAS  Google Scholar 

  • Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124:609–614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535–542

    CAS  PubMed  Google Scholar 

  • Muday GK, Haworth P (1994) Tomato root growth, gravitropism, and lateral development: Correlation with auxin transport. Plant Physiol Biochem 32:193–203

    CAS  PubMed  Google Scholar 

  • Muday GK, Lomax TL, Rayle DL (1995) Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica. Planta 195:548–553

    CAS  PubMed  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–95

    CAS  PubMed  Google Scholar 

  • Mulkey TJ, Kuzmanoff KM, Evans ML (1981) Promotion of growth and shift in the auxin dose/response relationship in maize roots treated with the ethylene biosynthesis inhibitors aminoethoxyvinylglycine and cobalt. Plant Sci Lett 25:43–48

    Google Scholar 

  • Mulkey TJ, Kuzmanoff KM, Evans ML (1982) Promotion of growth and hydrogen ion efflux by auxin in roots of maize pretreated with ethylene biosynthesis inhibitors. Plant Physiol 70:186–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller B, Stosser M, Tardieu F (1998) Spatial distributions of tissue expansion and cell division rates are related to irradiance and to sugar content in the growing zone of maize roots. Plant Cell Environ 21:149–158

    CAS  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Negi S, Sukumar P, Liu X, Cohen JD, Muday GK (2010) Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 61:3–15

    CAS  PubMed  Google Scholar 

  • Péret B, Li GW, Zhao J, Band LR, Voss U, Postaire O, Luu DT, Da Ines O, Casimiro I, Lucas M, Wells DM, Lazzerini L, Nacry P, King JR, Jensen OE, Schäffner AR, Maurel C, Bennett MJ (2012) Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14:991–998

    PubMed  Google Scholar 

  • Peretto R, Favaron F, Bettini V, De Lorenzo G, Marini S, Alghisi P, Cervone F, Bonfante P (1992) Expression and localization of polygalacturonase during the outgrowth of lateral roots in Allium porrum L. Planta 188:164–172

    CAS  PubMed  Google Scholar 

  • Peterson RL, Peterson CA (1986) Ontogeny and anatomy of lateral roots. In: Jackson MB (ed) New root formation in plants and cuttings. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, pp 1–30

    Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek LACJ (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    CAS  PubMed  Google Scholar 

  • Pilet PE, Barlow PW (1987) The role of abscisic acid in root growth and gravireaction: A critical review. Plant Growth Regul 6:217–265

    CAS  Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

    CAS  PubMed  Google Scholar 

  • Pond RH (1908) Emergence of lateral roots. Bot Gaz 46:410–421

    Google Scholar 

  • Prasad ME, Schofield A, Lyzenga W, Liu HX, Stone SL (2010) Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. Plant Physiol 153:1587–1596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130:1908–1917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122:481–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rashotte AM, Poupart J, Waddell CS, Muday GK (2003) Transport of the two natural auxins, indole-3-butiric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiol 133:761–772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raya-González J, Pelagio-Flores R, López-Bucio J (2012) The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana. J Plant Physiol 169:1348–1358

    PubMed  Google Scholar 

  • Rayle DL, Cleland R (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts JA, Whitelaw CA, González-Carranza ZH, McManus MT (2000) Cell separation processes in plants. Models, mechanisms and manipulation. Ann Bot 86:223–235

    Google Scholar 

  • Rodrigues-Pousada RA, De Rycke R, Dedonder A, Van Caeneghem W, Engler G, Van Montagu M, Van der Straeten D (1993) The Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene 1 is expressed during early development. Plant Cell 5:897–911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues-Pousada R, Van Caeneghem W, Chauvaux N, Van Onekelen H, Van Montagu M, Van der Straeten D (1999) Hormonal cross-talk regulates the Arabidopsis thaliana 1-aminocyclopropane-1-carboxylate synthase gene 1 in a developmental and tissue-dependent manner. Physiol Plant 105:312–320

    CAS  Google Scholar 

  • Rowntree RA, Morris DA (1979) Accumulation of 14C from exogenous labelled auxin in lateral root primordia of intact pea seedlings (Pisum sativum L.). Planta 144:463–466

    CAS  PubMed  Google Scholar 

  • Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9:745–757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Firml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruzicka K, Simaskova M, Duclercq J, Petrasek J, Zazimalova E, Simon S, Friml J, Van Montagu MCE, Benková E (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci U S A 106:4284–4289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    CAS  PubMed  Google Scholar 

  • Santisree P, Nongmaithem S, Vasuki H, Sreelakshmi Y, Ivanchenko MG, Sharma R (2011) Tomato root penetration in soil requires a coaction between ethylene and auxin signaling. Plant Physiol 156:1424–1438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814

    CAS  PubMed  Google Scholar 

  • Sarquis JI, Jordan WR, Morgan PW (1992) Effect of atmospheric pressure on maize root growth and ethylene production. Plant Physiol 100:2106–2108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seago JL (1973) Developmental anatomy in roots of Ipomoea purpurea. II. Initiation and development of secondary roots. Am J Bot 60:607–618

    Google Scholar 

  • Segura J (2000) Introducción al desarrollo. Concepto de hormona vegetal. In: Azcon-Bieto J, Talón M (eds) Fundamentos de Fisiología Vegetal. McGraw-Hill, Madrid, pp 285–303

    Google Scholar 

  • Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–3573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sievers A, Braun M, Monshausen GB (2002) The root cap: Structure and function. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Dekker, New York, pp 33–47

    Google Scholar 

  • Silk WK (2002) The kinematic of primary growth. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Dekker, New York, pp 113–116

    Google Scholar 

  • Smalle J, Van der Straeten D (1997) Ethylene and vegetative development. Physiol Plant 100:593–605

    CAS  Google Scholar 

  • Steinitz B, Barr N, Tabib Y, Vaknin Y, Bernstein N (2010) Control of in vitro rooting and plant development in Corymbia maculata by silver nitrate, silver thiosulfate and thiosulfate ion. Plant Cell Rep 29:1315–1323

    CAS  PubMed  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel Interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Beisner ER, Bartel B (2009) Silver ions increase auxin efflux independently of effects on ethylene response. Plant Cell 21:3585–3590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun P, Tian QY, Chen J, Zhang WH (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sutcliffe JF, Sexton R (1968) β-Glycerophosphatase and lateral root development. Nature 217:1285

    CAS  Google Scholar 

  • Sutherland J, McCully ME (1976) A note on the structural changes in the walls of pericycle cells initiating lateral root meristems in Zea mays. Can J Bot 54:2083–2087

    Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett M (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taiz L (1994) Expansins: Proteins that promote cell wall loosening in plants. Proc Natl Acad Sci U S A 91:7387–7389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8:943–948

    CAS  PubMed  Google Scholar 

  • Thimann KV (1936) Auxins and the growth of roots. Am J Bot 23:561–569

    CAS  Google Scholar 

  • Torrey JG (1962) Auxin and purine interactions in lateral root initiation in isolated pea root segments. Physiol Plant 45:177–185

    Google Scholar 

  • Tsurumi S, Ohwaki Y (1978) Transport of 14C-labeled indoleacetic acid in Vicia faba root segments. Plant Cell Physiol 19:1195–1206

    CAS  Google Scholar 

  • Van Staden J, Davey JE (1979) The synthesis, transport and metabolism of endogenous cytokinins. Plant Cell Environ 2:93–106

    Google Scholar 

  • Van Staden J, Ntingane BM (1996) The effect of a combination of decapitation treatments, zeatin and benzyladenine on the initiation and emergence of lateral roots in Pisum sativum. S Afr J Bot 62:11–16

    Google Scholar 

  • Van Tieghem P, Douliot H (1888) Recherches comparatives sur l'origine des membres endogènes dans les plantes vasculaires. Ann Sci Nat (Botanique), 7ième série 8:1–660

    Google Scholar 

  • Vuylsteker C, Dewaele E, Rambour S (1998) Auxin induced lateral root formation in chicory. Ann Bot 81:449–454

    CAS  Google Scholar 

  • Wang L, Hua DP, He JN, Duan Y, Chen ZZ, Hong XH, Gong ZZ (2011) Auxin response factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 7:e1002172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webster BD, Radin JW (1972) Growth and development of cultured radish roots. Am J Bot 59:744–751

    CAS  Google Scholar 

  • Wen TJ, Schnable PS (1994) Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am J Bot 81:833–842

    Google Scholar 

  • Wightman F, Schneider EA, Thimann KV (1980) Hormonal factors controlling the initiation and development of lateral roots. II. Effects of exogenous growth factors on lateral root formation in pea roots. Physiol Plant 49:304–314

    CAS  Google Scholar 

  • Yang RL, Evans ML, Moore R (1990) Microsurgical removal of epidermal and cortical cells evidence that the gravitropic signal moves through the outer cell layers in primary roots of maize. Planta 180:530–536

    Google Scholar 

  • Yin CX, Wu QR, Zeng HL, Xia K, Xu JW, Li RW (2011) Endogenous Auxin is Required but Supraoptimal for Rapid Growth of Rice (Oryza sativa L.) Seminal Roots, and Auxin Inhibition of Rice Seminal Root Growth is Not Caused by Ethylene. J Plant Growth Regul 30:20–29

    CAS  Google Scholar 

  • Zacarias L, Reid MS (1992) Inhibition of ethylene action prevents root penetration through compressed media in tomato (Lycopersicon esculentum) seedlings. Physiol Plant 86:301–307

    CAS  Google Scholar 

  • Zeadan SM, MacLeod RD (1984) Some effects of indol-3-yl-acetic acid on lateral root development in attached and excised roots of Pisum sativum L. Ann Bot 54:759–766

    Google Scholar 

  • Zeier J, Ruel K, Ryser U, Schreiber L (1999) Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots. Planta 209:1–12

    CAS  PubMed  Google Scholar 

  • Zhang NG, Hasenstein KH (1999) Initiation and elongation of lateral roots in Lactuca sativa. Int J Plant Sci 160:511–519

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Victoria Alarcón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alarcón, M.V., Lloret, P.G., Salguero, J. (2014). The Development of the Maize Root System: Role of Auxin and Ethylene. In: Morte, A., Varma, A. (eds) Root Engineering. Soil Biology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54276-3_5

Download citation

Publish with us

Policies and ethics