Skip to main content

Root Proteomics

  • Chapter
  • First Online:
Root Engineering

Part of the book series: Soil Biology ((SOILBIOL,volume 40))

  • 2338 Accesses

Abstract

Plant root systems form complex networks with the surrounding soil environment and are controlled by both internal and external factors. The growth of the primary root, formation of lateral roots, gravitropism, nutrient and water uptake, interactions with microorganisms, and several other functions are controlled by various protein signaling. Regulatory proteins also have a vital role in the distribution of hormones in plant organs and the responses of plants to external stresses. In gravitropism, although the distribution of auxin in the root elongation zone influences the downward bending of the root, proteins are the main players involved in auxin transport. Roots are the first plant tissue that encounters most abiotic stresses; thus, root proteins are involved in sensing and responding to stress conditions. Therefore, the identification of proteins that mediate these responses is expected to help better understand the mechanisms of root action under normal and stressful conditions. In this chapter, the roles of various proteins modulating hormonal actions in roots are discussed, and the proteomic profiles of roots exposed to abiotic stress are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaei K, Ehsanpour AA, Komatsu S (2008) Proteome analysis of potato under salt stress. J Proteome Res 7:4858–4868

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Komatsu S (2009) Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics 9:4889–4907

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Lee DG, Lee SH, Lee KW, Bahk J, Lee BH (2007) A proteomic screen and identification Waterlogging-regulated proteins in tomato roots. Plant Soil 295:37–51

    Article  CAS  Google Scholar 

  • Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, Oh KW, Yun BW, Lee BH (2010a) Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. J Biosci 35:49–62

    Article  CAS  PubMed  Google Scholar 

  • Alam I, Sharmin SA, Kim KH, Yang JK, Choi MS, Lee BH (2010b) Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil 333:491–505

    Article  CAS  Google Scholar 

  • Alexova R, Millar AH (2013) Proteomics of phosphate use and deprivation in plants. Proteomics 13:609–623

    Article  CAS  PubMed  Google Scholar 

  • Azri W, Chambon C, Herbette S, Brunel N, Coutand C, Leplé JC, Ben Rejeb I, Ammar S, Julien JL, Roeckel-Drevet P (2009) Proteome analysis of apical and basal regions of poplar stems under gravitropic stimulation. Physiol Plant 136:193–208

    Article  CAS  PubMed  Google Scholar 

  • Band LR, Wells DM, Larrieu A, Sun J, Middleton AM, French AP, Brunoud G, Sato EM, Wilson MH, Peret B et al (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci USA 109:4668–4673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett M, Marchant A, Green H, May S, Ward S, Millner P, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Blackler AR, Speers AE, Ladinsky MS, Wu CC (2008) A shotgun proteomic method for the identification of membrane-embedded proteins and peptides. J Proteome Res 7:3028–3034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blakely LM, Blakely RM, Colowit PM, Elliot DS (1988) Experimental studies on lateral root formation in radish seedlings roots. Analysis of the dose-response to exogenous auxin. Plant Physiol 87:414–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blasco R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:9229–9235

    Google Scholar 

  • Cho K, Torres NL, Subramanyam S, Deepak SA, Sardesai N, Han O, Williams CE, Ishii H, Iwahashi H, Rakwal R (2006) Protein extraction/solubilization protocol for monocot and dicot plant gel-based proteomics. J Plant Biol 49:413–420

    Article  CAS  Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    Article  CAS  PubMed  Google Scholar 

  • Damerval C, Vartanian N, de Vienne D (1988) Differential two-dimensional protein patterns as related to tissue specificity and water conditions in Brassica napus var oleifera root system. Plant Physiol 86:1304–1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De-la-Peña C, Badri DV, Lei Z, Watson BS, Brandão MM, Silva-Filho MC, Sumner LW, Vivanco JM (2010) Root secretion of defense-related proteins is development-dependent and correlated with flowering time. J Biol Chem 285:30654–30665

    Article  PubMed Central  PubMed  Google Scholar 

  • Dello Ioio R, Linhares FS, Sabatini S (2008) Emerging role of cytokinin as a regulator of cellular differentiation. Curr Opin Plant Biol 11:23–27

    Article  CAS  PubMed  Google Scholar 

  • De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439

    Article  PubMed  Google Scholar 

  • Ding C, You J, Wang S, Liu Z, Li G, Wang Q, Ding Y (2012) A proteomic approach to analyze nitrogen- and cytokinin-responsive proteins in rice roots. Mol Biol Rep 39:1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franco JA, Bañón S, Vicente MJ, Miralles J, Martínez-Sánchez JJ (2011) Root development in horticultural plants grown under abiotic stress conditions—a review. J Hortic Sci Biotechnol 86:543–556

    Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Guo G, Ge P, Ma C, Li X, Lv D, Wang S, Ma W, Yan Y (2012) Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteomics 75:1867–1885

    Article  CAS  PubMed  Google Scholar 

  • Hahne H, Wolff S, Hecker M, Becher D (2008) From complementarity to comprehensiveness-targeting the membrane proteome of growing Bacillus subtilis by divergent approaches. Proteomics 8:4123–4136

    Article  CAS  PubMed  Google Scholar 

  • Haque ME, Kawaguchi K, Komatsu S (2011) Analysis of proteins in aerenchymatous seminal roots of wheat grown in hypoxic soils under waterlogged conditions. Protein Pept Lett 18:912–924

    Article  CAS  PubMed  Google Scholar 

  • Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 53:27–37

    Article  CAS  PubMed  Google Scholar 

  • Hashiguchi A, Sakata K, Komatsu S (2009) Proteome analysis of early-stage soybean seedlings under flooding stress. J Proteome Res 8:2058–2069

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293–1302

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Kiss JZ, Miller KM, Ogden LA, Roth KK (2002) Phototropism and gravitropism in lateral roots of Arabidopsis. Plant Cell Physiol 43:35–43

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S (2008) Plasma membrane proteome in Arabidopsis and rice. Proteomics 8:4137–4145

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Ahsan N (2009) Soybean proteomics and its application to functional analysis. J Proteomics 72:325–336

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Konishi H (2005) Proteome analysis of rice root proteins regulated by gibberellin. Genomics Proteomics Bioinformatics 3:132–142

    PubMed  Google Scholar 

  • Komatsu S, Tanaka N (2005) Rice proteome analysis: a step toward functional analysis of the rice genome. Proteomics 5:938–949

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K (2009) A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 8:4766–4778

    Article  CAS  PubMed  Google Scholar 

  • Kong FJ, Oyanagi A, Komatsu S (2010) Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim Biophys Acta 1804:124–136

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Cooper B (2006) Alternative workflows for plant proteomic analysis. Mol Biosyst 2:621–626

    Article  CAS  PubMed  Google Scholar 

  • Leyser O (2006) Dynamic integration of auxin transport and signalling. Curr Biol 16:R424–R433

    Article  CAS  PubMed  Google Scholar 

  • Li K, Xu C, Zhang K, Yang A, Zhang J (2007) Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics 7:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Hsu YK, Cheng YH, Yen HC, Wu YP, Wang CS, Lai CC (2012) Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Commun Mass Spectrom 26:1649–1660

    Article  CAS  PubMed  Google Scholar 

  • Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma R, Sun L, Chen X, Jiang R, Sun H, Zhao D (2013) Proteomic changes in different growth periods of ginseng roots. Plant Physiol Biochem 67:20–32

    Article  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE, Benfey PN (1997) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci 2:390–396

    Article  Google Scholar 

  • Mathesius U (2008) Auxin: at the root of nodule development? Funct Plant Biol 35:651–668

    Article  CAS  Google Scholar 

  • Mathesius U (2009) Comparative proteomic studies of root-microbe interactions. J Proteomics 72:353–366

    Article  CAS  PubMed  Google Scholar 

  • Mehta A, Magalhães BS, Souza DS, Vasconcelos EA, Silva LP, Grossi-de-Sa MF, Franco OL, da Costa PH, Rocha TL (2008) Rooteomics: the challenge of discovering plant defense-related proteins in roots. Curr Protein Pept Sci 9:108–116

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei M, Soltani N, Sarhadi E, Pascovici D, Keighley T, Salekdeh GH, Haynes PA, Atwell BJ (2012) Shotgun proteomic analysis of long-distance drought signaling in rice roots. J Proteome Res 11:348–358

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi PP, Moieni A, Hiraga S, Komatsu S (2012a) Organ-specific proteomic analysis of drought-stressed soybean seedlings. J Proteomics 75:1906–1923

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi PP, Moieni A, Komatsu S (2012b) Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids 43:2137–2152

    Article  CAS  PubMed  Google Scholar 

  • Mooney BP, Miernyk JA, Greenlief CM, Thelen JJ (2006) Using quantitative proteomics of Arabidopsis roots and leaves to predict metabolic activity. Physiol Plant 128:237–250

    Article  CAS  Google Scholar 

  • Moubayidin L, Perilli S, Dello Ioio R, Di Mambro R, Costantino P, Sabatini S (2010) The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol 20:1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2011) Plant adaptations to salt and water stress: differences and commonalities. Adv Bot Res 57:1–32

    Article  CAS  Google Scholar 

  • Nanjo Y, Skultety L, Ashraf Y, Komatsu S (2010) Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. J Proteome Res 9:3989–4002

    Article  CAS  PubMed  Google Scholar 

  • Nanjo Y, Nouri MZ, Komatsu S (2011) Quantitative proteomic analyses of crop seedlings subjected to stress conditions; a commentary. Phytochemistry 72:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Nanjo Y, Skultety L, Uváčková L, Klubicová K, Hajduch M, Komatsu S (2012) Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. J Proteome Res 11:372–385

    Article  CAS  PubMed  Google Scholar 

  • Neilson KA, Gammulla CG, Mirzaei M, Imin N, Haynes PA (2010) Proteomic analysis of temperature stress in plants. Proteomics 10:828–845

    Article  CAS  PubMed  Google Scholar 

  • Neilson KA, Scafaro AP, Chick JM, George IS, Van Sluyter SC, Gygi SP, Atwell BJ, Haynes PA (2013) The influence of signals from chilled roots on the proteome of shoot tissues in rice seedlings. Proteomics 13:1922–1933

    Article  CAS  PubMed  Google Scholar 

  • Nozu Y, Tsugita A, Kamijo K (2006) Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics 6:3665–3670

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Alfocea F, Ghanem ME, Gómez-Cadenas A, Dodd IC (2011) Omics of root-to-shoot signaling under salt stress and water deficit. OMICS 15:893–901

    Article  PubMed  Google Scholar 

  • Pernisová M, Kuderová A, Hejátko J (2011) Cytokinin and auxin interactions in plant development: metabolism, signalling, transport and gene expression. Curr Protein Pept Sci 12:137–147

    Article  PubMed  Google Scholar 

  • Perrin RM, Young LS, Murthy UMN, Harrison BR, Wang Y, Will JL, Masson PH (2005) Gravity signal transduction in primary roots. Ann Bot 96:737–743

    Article  CAS  PubMed  Google Scholar 

  • Puig J, Pauluzzi G, Guiderdoni E, Gantet P (2012) Regulation of shoot and root development through mutual signaling. Mol Plant 5:974–983

    Article  CAS  PubMed  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  CAS  PubMed  Google Scholar 

  • Schenck CA, Nadella V, Clay SL, Lindner J, Abrams Z, Wyatt SE (2013) A proteomics approach identifies novel proteins involved in gravitropic signal transduction. Am J Bot 100:194–202

    Article  CAS  PubMed  Google Scholar 

  • Schlomann M, Schmidt E, Knackmuss HJ (1990) Different types of dienelactone hydrolase in 4-fluorobenzoate utilizing bacteria. J Bacteriol 179:5112–5118

    Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Sugimoto M, Takeda K (2009) Proteomic analysis of specific proteins in the root of salt-tolerant barley. Biosci Biotechnol Biochem 73:2762–2765

    Article  CAS  PubMed  Google Scholar 

  • Sumner LW, Watson BS, Lei Z, Nagaraj S (2007) Proteomics of Medicago truncatula. In: Samaj J, Thelen JJ (eds) Plant proteomics. Springer, Berlin, pp 121–136

    Chapter  Google Scholar 

  • Tanaka N, Konishi H, Khan MM, Komatsu S (2004) Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins. Mol Genet Genomics 270:485–496

    Article  CAS  PubMed  Google Scholar 

  • Toorchi M, Yukawa K, Nouri MZ, Komatsu S (2009) Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides 30:2108–2117

    Article  CAS  PubMed  Google Scholar 

  • Vandeleur R, Niemietz C, Tilbrook J, Tyerman SD (2005) Role of aquaporins in root response to irrigation. Plant Soil 274:141–161

    Article  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice roots. Proteomics 5:235–244

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Lin Q, Ponnusamy S, Kothandaraman N, Lim TK, Zhao C, Kit HS, Arijit B, Rauff M, Hew CL, Chung MC, Joshi SB, Choolani M (2007) Differential recovery of membrane proteins after extraction by aqueous methanol and trifluoroethanol. Proteomics 7:1654–1663

    Article  CAS  PubMed  Google Scholar 

  • Zörb C, Schmitt S, Mühling KH (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10:4441–4449

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad-Zaman Nouri or Setsuko Komatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nouri, MZ., Komatsu, S. (2014). Root Proteomics. In: Morte, A., Varma, A. (eds) Root Engineering. Soil Biology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54276-3_19

Download citation

Publish with us

Policies and ethics