Skip to main content

Cluster Roots

  • Chapter
  • First Online:
Root Engineering

Part of the book series: Soil Biology ((SOILBIOL,volume 40))

Abstract

Phosphorus (P) is one of the most important nutrients that significantly limit growth and metabolism. Cluster roots (CR) or proteoid roots are dense clusters of fine rootlets produced around a main axis and are found in most species of the Proteaceae family and also in some members of Fabaceae (e.g., Lupinus albus), Cyperaceae, and Restionaceae, among others. The morphology, physiology, and functions of cluster roots have been studied mainly in L. albus, in Australian and South African Proteaceae species, and recently in South American Proteaceae. CR increase nutrient uptake using their high surface area to absorb nutrients as well as by carboxylate, acid phosphatase, and/or protease exudation. Carboxylates exuded from roots promote P mobilization from the soil matrix by ligand exchange. Also, acid phosphatase can hydrolyze organic P compounds, which increases its availability. The main inducing factor of cluster root, carboxylate, and acid phosphatase exudation is P deficiency in shoots, but its formation is also influenced by N and Fe deficiency. Malate and citrate are the most frequent carboxylates exuded, with variable composition and exudation rates depending on leaf P starvation, P soil distribution, and composition. CR are ephemeral, with similar formation kinetics (20–30 days) among species. Mature CR are the stage that exhibits the highest carboxylate exudation rate. Active CR cells exude H+ and organic anions (mainly citrate and malate) separately to the rhizosphere, leading to acidification. Citrate accumulation has been associated with an increase in phosphoenolpyruvate carboxylase (PEPC) activity. The role of CR of Proteaceae species in nutrient acquisition in harsh environments is discussed, considering recently published results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberdi M, Reyes-Díaz M, Zúñiga R, Hess S, Bravo L, Corcuera L (2009) Photochemical efficiency of PSII and photoprotective pigments in seedlings and adults of two Proteaceae with different shade tolerance from the Chilean temperate rain forest. Rev Chil Hist Nat 82:387–402

    Article  Google Scholar 

  • Avila A (2013) Evaluación de la capacidad de extracción de fósforo en Proteaceas chilenas. Tesis para optar al grado de Magister en Ciencias vegetales. Escuela de Postgrado en Ciencias Agrarias. Universidad Austral de Chile, Valdivia, Chile

    Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    Article  CAS  Google Scholar 

  • Bustos (2011) Efecto de la intensidad lumínica en el crecimiento de plántulas de Embothrium coccineum en procedencias contrastantes; una aproximación morfológica, fisiológica y genética. Tesis para optar al grado de Magister en Ciencias vegetales. Escuela de Postgrado en Ciencias Agrarias. Universidad Austral de Chile. Valdivia, Chile

    Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change 19:292–305

    Article  Google Scholar 

  • Cramer MD, Shane MW, Lambers H (2005) Physiological changes in white lupin associated with variation in root-zone CO2 concentration and cluster-root P mobilization. Plant Cell Environ 28:1203–1217

    Article  CAS  Google Scholar 

  • Crocker LJ, Schwintzer CR (1993) Factors affecting formation of cluster roots in Myrica gale seedlings in water culture. Plant Soil 152:287–298

    Article  Google Scholar 

  • Delgado M, Zúñiga-Feest A, Borie F (2011) Seasonal variation on phosphatase activity of cluster roots of Embothrium coccineum. Rhizosphere 3 International meeting, Perth, Australia

    Google Scholar 

  • Delgado M, Zúñiga-Feest A, Alvear M, Borie F (2013) The effect of phosphorus on cluster root formation and functioning of Embothrium coccineum (R. et J. Forst.). Plant Soil 373(1–2):765–773. doi:10.1007/s11104-013-1829-3

    Article  CAS  Google Scholar 

  • Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125:2059–2067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dell B, Kuo J, Thompson GJ (1980) Development of proteoid roots in Hakea oblique R. BR. (Proteaceae) grown in water culture. Aust J Bot 28:27–37

    Article  Google Scholar 

  • Dellórto M, Santi S, de Nisi P, Cesco S, Varanini Z, Zocchi G, Pinton R (2000) Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity. J Exp Bot 51:695–701

    Article  Google Scholar 

  • Díaz M (2012) Efecto del fósforo en el crecimiento y desarrollo de raíces proteoideas en proteáceas. Tesis para optar al grado de Licenciado en Ciencias Biológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile

    Google Scholar 

  • Dinkelaker B, Romheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:285–292

    Article  CAS  Google Scholar 

  • Donoso G, Castro M, Navarrete D, Bravo L, Corcuera L (2010) Seasonal induction of cluster root in Embothrium coccineum J.R. Forst. & G. Forst. In the field: factors that regulate their development. Chil J Agric Res 70:559–566

    Article  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800

    Article  CAS  Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus, movement in the soil/root interface is enhanced. Plant Soil 70:107–124

    Article  CAS  Google Scholar 

  • Gerke J, Römer W, Jungk A (1994) The excretion of citric and malic acid by proteoid roots of Lupinus albus L.: effects on soil solution concentration of phosphate, iron, and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol. Z Pflanzenernaehr Bodenk 157:289–294

    Article  CAS  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810

    Article  CAS  Google Scholar 

  • Grinbergs J, Valenzuela E, Ramírez C (1987) Formación y desarrollo de raíces proteiformes en plántulas de Gevuina avellana mol. Agro Sur 15(1):1–9

    Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical properties involved in the rhizosphere. Adv Agron 64:225–265

    Article  CAS  Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil 35:227–239

    Article  CAS  Google Scholar 

  • Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86

    Article  CAS  Google Scholar 

  • Jeschke WD, Pate JS (1995) Mineral nutrition and transport in xylem and phloem of Banksia prionotes (Proteaceae), a tree with dimorphic root morphology. J Exp Bot 46:895–905

    Article  CAS  Google Scholar 

  • Johnson JF, Allan D, Vance CP (1994) Phosphorus Stress-Induced Proteoid Roots Show Altered Metabolism in Lupinus albus. Plant Physiol 104:657–665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson JF, Allan D, Vance CP, Weiblen G (1996) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Contribution to organic acid exudation by proteoid roots. Plant Physiol 112:19–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones D (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Brassington DS (1998) Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur J Soil Sci 49:447–455

    Article  CAS  Google Scholar 

  • Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of lupin white (Lupinus albus L.). Plant Cell Environ 21:467–478

    Article  CAS  Google Scholar 

  • Kihara T, Wada T, Suzuki Y, Hara T, Koyama H (2003) Alteration of citrate metabolism in cluster roots of white lupin. Plant Cell Physiol 44:901–908

    Article  CAS  PubMed  Google Scholar 

  • Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus limited soil. Plant Cell Physiol 41:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Shane MW (2007) Role of root clusters in phosphorus acquisition and increasing biological diversity in agriculture. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene-plant-crop relations. Springer, Heidelberg, pp 237–250

    Chapter  Google Scholar 

  • Lambers H, Juniper D, Cawthray GR, Veneklaas EJ, Martínez-Ferri E (2002) The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 238:111–122

    Article  CAS  Google Scholar 

  • Lambers H, Shane WM, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed Central  PubMed  Google Scholar 

  • Lambers H, Bishop J, Hopper S, Laliberté E, Zuñiga-Feest A (2012) Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann Bot 110:329–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambers H, Clements JC, Matthew NN (2013) How a phosphorus –acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am J Bot 100(2):1–26

    Article  Google Scholar 

  • Lamont B (1974) The biology of dauciform roots in the sedge Cyathochaete avenacea. New Phytol 73:985–996

    Article  Google Scholar 

  • Lamont BB (1976) The effects of seasonality and waterlogging on the root systems of a number of Hakea species. Aust J Bot 24:691–702

    Article  Google Scholar 

  • Lamont BB (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia. Bot Rev 48:597–689

    Article  CAS  Google Scholar 

  • Lamont BB (1983) Proteoid roots in the South African Proteaceae. J S Afr Bot 49:103–123

    Google Scholar 

  • Lamont BB (2003) Structure, ecology and physiology of root clusters – a review. Plant Soil 248:1–19

    Article  CAS  Google Scholar 

  • Li M, Shinano T, Tadona T (1997) Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions. Soil Sci Plant Nutr 43:237–245

    Article  CAS  Google Scholar 

  • Massonneau A, Langlade N, Leon S, Smutny J, Vogt E, Neumann G, Martinoia E (2001) Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta 213:534–542

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382

    Article  CAS  Google Scholar 

  • Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM (1993) NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol 103:713–718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ochoa V (2010) Efecto del fósforo en el crecimiento y desarrollo temprano de raíces proteoídeas en Embothrium coccineum de procedencias contrastantes. Tesis Licenciatura en Ciencias Biológicas. Universidad Austral de Chile, Facultad de Ciencias, 71 p

    Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson M, Christie M, Webb R, Gamage H, Carroll B, Schenk P, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci 105:4524–4529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paungfoo-Lonhienne C, Schenk P, Lonhienne TGA, Brackin R, Meier S, Rentsch D, Schmidt S (2009) Nitrogen affects cluster root formation and expression of putative peptide transporters. J Exp Bot 60:2665–2676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peñaloza E, Corcuera LJ, Martinez J (2002) Spatial and temporal variation in citrate and malate exudation and tissue concentration as affected by P stress in roots of white lupin. Plant Soil 241:209–221

    Article  Google Scholar 

  • Peñaloza E, Muñoz G, Salvo-Garrido H, Silva H, Corcuera L (2005) Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. J Exp Bot 56:145–153

    PubMed  Google Scholar 

  • Piper F, Baeza G, Zúñiga-Feest A, Fajardo A (2013) Soil nitrogen, and not phosphorus promotes cluster root formation in a South American Proteaceae. Am J Bot 100(12):2328–2338

    Article  CAS  PubMed  Google Scholar 

  • Playsted CWS, Johnston ME, Ramage CM (2006) Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol 170:491–500

    Article  CAS  PubMed  Google Scholar 

  • Purnell H (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victoria species. Aust J Bot 8:38–50

    Article  Google Scholar 

  • Racette S, Louis I, Torrey JG (1990) Cluster root formation by Gymnostoma papuanum (Casuarinaceae) in relation to aeration and mineral nutrient availability in water culture. Can J Bot 68:2564–2570

    Article  CAS  Google Scholar 

  • Ramírez C, Valenzuela E, San Martín C (2005) Nuevos antecedentes sobre desarrollo temprano, morfología y anatomía de las raíces proteiformes de Gevuina avellana. Agro Sur 32:33–44

    Article  Google Scholar 

  • Reddell P, Yun Y, Warren A (1997) Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply. Aust J Bot 45:41–51

    Article  Google Scholar 

  • Rentsch D, Schmidt S, Tegederc M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. Soil Biota 50–62

    Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004) Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia 139:267–276

    Article  PubMed  Google Scholar 

  • Roelofs RFR, Rengel Z, Cawthra YGR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant Cell Environ 24:891–903

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–60

    Article  CAS  PubMed  Google Scholar 

  • Schimidt S, Steward GR (1997) Waterlogging and fire impacts on nitrogen availability and utilization in subtropical wet heathland (Wallum). Plant Cell Environ 20:1231–1241

    Article  Google Scholar 

  • Schmidt S, Masonm M, Sangtiean T, Stewart GR (2003) Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen? Plant Soil 248:157–165

    Article  CAS  Google Scholar 

  • Schubert S, Yan F (1997) Nitrate and ammonium nutrition of plants: effects on acid/base balance and adaptation of root cell plasmalemma H+ ATPase. Z Pflanzenernaehr Bodenk 160:275–281

    Article  CAS  Google Scholar 

  • Segura-Uauy A (1999) Sucesión vegetal en depósitos volcánicos del sur de Chile: una aproximación experimental a dos escalas espaciales. PhD Tesis Pontificia Universidad Católica de Chile. Santiago de Chile

    Google Scholar 

  • Selivanov IA, Utemova LD (1969) Root anatomy of sedges in relation to their mycotrophy. Trans Perm State Pedag Inst 68:45–55

    Google Scholar 

  • Shane MW, Dixon KW, Lambers H (2005) The occurence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). New Phytol 165(3):887–898

    Article  CAS  PubMed  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    Article  CAS  Google Scholar 

  • Shane MW, Lambers H (2006) Systemic suppression of cluster-root formation and net P-uptake rates in Grevillea crithmifolia at elevated P supply: a proteacean with resistance for developing symptoms of ‘P toxicity’. J Exp Bot 57:413–423

    Article  CAS  PubMed  Google Scholar 

  • Shane MW, Cramer MD, Funayama-Noguchi S, Cawthray GR, Millar AH, Day DA, Lambers H (2004a) Developmental physiology of cluster-root carboxylate synthesis and exudation in Harsh Hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol 135:549–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shane MW, McCully ME, Lambers H (2004b) Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). J Exp Bot 55:1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Shane MW, Szota C, Lambers H (2004c) A root trait accounting for the extreme phosphorus sensitivity of Hakea prostrata (Proteaceae). Plant Cell Environ 27:991–1004

    Article  CAS  Google Scholar 

  • Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots. Plant Cell Environ 29:1989–1999

    Article  CAS  PubMed  Google Scholar 

  • Skene KR (1998) Cluster root: some ecological considerations. J Ecol 86:1060–1064

    Article  Google Scholar 

  • Skene KR (2000) Pattern formation in cluster roots: some developmental and evolutionary considerations. Ann Bot 85:901–908

    Article  Google Scholar 

  • Skene KR, Raven JA, Sprent JI (1998) Cluster roots development in Grevillea robusta (Proteaceae). I. Xylem, pericycle, cortex and epidermis development in a determinate root. New Phytol 138:725–732

    Article  Google Scholar 

  • Sousa MF, Façanha AR, Tavares RM, Lino-Neto T, Gerós H (2007) Phosphate transport by proteoid roots of Hakea sericea. Plant Sci 173:550–558

    Article  CAS  Google Scholar 

  • Spiertz JHJ, Struik P, van Laars HH (eds) (2007) Scale and complexity in plant systems research: gene-plant-crop relations. Springer, The Netherlands, pp 237–250

    Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vitousek P, Porder MS, Houlton BZ, Chadwick A (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15

    Article  PubMed  Google Scholar 

  • Watt M, Evans JR (1999) Proteoid roots. Physiology and development. Plant Physiol 121:317–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan F, Zhu Y, Möller C, Zörb C, Schubert S (2002) Adaptation of H + -pumping and plasma membrane H + ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaid H, Arahou M, Diem H, El Morabet R (2003) Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species? Plant Soil 248:229–235

    Article  CAS  Google Scholar 

  • Zúñiga-Feest A, Delgado M, Reyes-Diaz M, Ochoa V. (2009) Variación estacional del crecimiento, contenido interno de fósforo y exudación de ácidos en raíces proteoídeas en la especie pionera, Embothrium coccineum (R.ET J. Forst.) Proteacea. Libro de actas XI Congreso Nacional De La Ciencia Del Suelo, Chillán, Chile

    Google Scholar 

  • Zúñiga-Feest A, Delgado M, Alberdi M (2010) The effect of phosphorus on growth and cluster-root formation in the Chilean Proteaceae: Embothrium coccineum (R. et J. Forst.). Plant Soil 334:113–121

    Article  Google Scholar 

  • Zúñiga-Feest A, Avila A, Piper F (2013) Cluster roots of Chilean Proteaceae from volcanic young soils. Conference ComBio, Perth, Australia

    Google Scholar 

Download references

Acknowledgments

Chilean National Science Council Grant 1130440 FONDECYT. Dr. Norman Hüner that give facilities to study E. coccineum CR anatomy, from The University of Western Ontario, Canada. We would also like to thank Dr. Hans Lambers and Dr. Michael Shane from University of Western Australia, who gave us facilities to study G. avellana CR on hydroponics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Zúñiga-Feest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zúñiga-Feest, A., Delgado, M., Bustos, Á. (2014). Cluster Roots. In: Morte, A., Varma, A. (eds) Root Engineering. Soil Biology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54276-3_16

Download citation

Publish with us

Policies and ethics