Skip to main content

Anatomy of Root from Eyes of a Microbiologist

  • Chapter
  • First Online:
Root Engineering

Part of the book series: Soil Biology ((SOILBIOL,volume 40))

Abstract

Microbial association with plants has multidimensional attribute. Mycorrhizosphere microbes contribute effectively to disease resistance and nutrient cycling in plant and thus can be applied for crop development, optimization of plant health, nutrition, yield, etc. This chapter gives insight of root anatomy and microbe-associated complex root structural units. The chapter also focuses on communication between root and microbes as well as communication within microorganisms. Microbes are brilliantly associated with various root parts playing significant role in transport of nutrients proving beneficial to both plants and soil. Bacteria dominating root structure are Pseudomonas, Serratia, Azospirillum, Bacillus, Proteobacteria, Bacteroidetes, Actinobacteria, etc., and some fungi are Piriformospora indica, Piriformospora williamsii, Leccinum, Suillus, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ascencio J (1997) Root secreted acid phosphatase kinetics as a physiological marker for phosphorus deficiency. J Plant Nutr 20:9–26

    Article  CAS  Google Scholar 

  • Bacilio-Jimeanez M, Aguilar Flores S, Valle MVD, Zepeda APA, Zenteno E (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33:167–172

    Article  Google Scholar 

  • Bacilio-Jimenez M et al (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signalling in plant-microbe interactions. Science 276:726–733

    Article  CAS  PubMed  Google Scholar 

  • Becard G et al (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbiosis. Mol Plant Microbe Interact 8:252–258

    Article  CAS  Google Scholar 

  • Bengough AG, Mc Kenzie BM (1997) Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth. J Exp Bot 48:885–893

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Article  Google Scholar 

  • Bouarab K et al (2002) A saponin-detoxifying enzyme mediates suppression of plant defenses. Nature 418:889–892

    Article  CAS  PubMed  Google Scholar 

  • Bressan M, Roncato MA, Bellvert F, Comte G, Haichar FZ, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Lefert PS (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Chester K (1933) The problem of acquired physiological immunity in plants. Q Rev Biol 8:275–324

    Article  Google Scholar 

  • De Angelis KM, Brodie E, Desantis TZ, Andersen G, Lindow SE, Firestone MK (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178

    Article  Google Scholar 

  • De Weert S et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • De Wit PJGM (1997) Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci 2:452–458

    Article  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Desbrosses GJ, Stougaard J (2011) Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 55(4):1635–1639

    Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Duff SMG et al (1994) The role of acid phosphatase in plant phosphorus metabolism. Physiol Plant 90:791–800

    Article  CAS  Google Scholar 

  • Fan B, Chen XH, Budiharzo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J Biotechnol 151(4):303–311

    Article  CAS  PubMed  Google Scholar 

  • Flor AH (1955) Host-parasite interactions in flax rust—its genetics and other implications. Phytopathology 45:680–685

    Google Scholar 

  • Flores HE et al (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  PubMed  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. doi:10.1007/s11104-008-9833-8

    Article  CAS  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46

    Article  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gewin V (2010) Nature news feature food, an underground revolution, plant breeders are turning their attention to roots to increase yields without causing environmental damage. Virginia Gewin unearths some promising subterranean strategies. Nature 466:29

    Article  Google Scholar 

  • Gianinazzi-pearson V, Gianinazzi S (1989) Cellular and genetical aspects of the interactions between host and fungal symbionts in mycorrhizae. Genome 31:341–366

    Article  Google Scholar 

  • Goldstein AH et al (1987) Phosphate starvation inducible excretion of acid phosphatase by cells Lycopersicon esculentum in suspension culture. J Cell Biochem 11B:38–42

    Google Scholar 

  • Griffin GJ et al (1976) Nature and quantity of sloughed organic matter produced by roots of axenic peanut plants. Soil Biol Biochem 8:29–32

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the Arbuscular Mycorrhizal Symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hawes MC et al (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133

    Article  CAS  PubMed  Google Scholar 

  • Haynes JG, Czymmek KJ, Carlson CA, Veereshlingam H, Dickstein R, Sherrier DJ (2004) Rapid analysis of legume root nodule development using confocal microscopy. New Phytol 163:661–668

    Article  Google Scholar 

  • Hilgard EW (1911) Soils. The MacMillan Company, New York, pp 487–549

    Google Scholar 

  • Hohl H, Varma A (2010) Soil: the living matrix. Soil Biol 19:1–18

    Article  CAS  Google Scholar 

  • Jone DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil root interface. Plant Soil 321:5–33. doi:10.1007/s11104-009-9925-0

    Article  Google Scholar 

  • Kloepper JW (1991) Plant growth-promoting rhizobacteria as biological control agents of soilborne diseases. In: Bay-Petersen J (ed) The biological control of plant diseases, FFTC book series no. 42. Food and Fertilizer Technology Center, Taipei

    Google Scholar 

  • Lindblad P (2009) Cyanobacteria in symbiosis with cycads. Microbiol Monogr 8:225–233

    Article  Google Scholar 

  • Lundberg DS, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Nature 488:86–90

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego, CA, 889

    Google Scholar 

  • Mc Cully E (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    Article  CAS  Google Scholar 

  • McNear DH Jr (2013) The rhizosphere—roots, soil and everything in between. Nat Educ Knowl 4(3):1

    Google Scholar 

  • Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4:81–95

    Article  CAS  PubMed  Google Scholar 

  • Mia MAB, Shamsuddin ZH, Mahmood M (2010) Use of plant growth promoting bacteria in banana: a new insight for sustainable banana production. Int J Agric Biol 12:459–467

    Google Scholar 

  • Mithofer A (2002) Suppression of plant defence in rhizobia–legume symbiosis. Trends Plant Sci 7:440–444

    Article  CAS  PubMed  Google Scholar 

  • Montesinos E, Bonaterra A, Badosa E, Frances J, Alemany J, Llorente I, Moragrega C (2002) Plant-microbe interactions and the new biotechnological methods of plant disease control. Int Microbiol 5:169–175. doi:10.1007/s10123-002-0085-9

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Romheld V (2000) The release of root exudates as affected by the plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere, biochemistry and organic substances at the soil–plant interface. Dekker, New York, pp 41–93

    Google Scholar 

  • Oldroyd GED (2007) Nodules and hormones. Plant Sci 315:52–53

    CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775. doi:10.1038/nrmicro1987

    Article  CAS  PubMed  Google Scholar 

  • Peters NK et al (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  CAS  PubMed  Google Scholar 

  • Phillips DA (2000) Biosynthesis and release of rhizobial nodulation gene inducers by legumes. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific, Wymondham, pp 349–364

    Google Scholar 

  • Prieto P, Schiliro E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root Hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62(2):435–445. doi:10.1007/s00248-011-9827-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Rootonic (2013) http://ebookbrowsee.net/rootonic-book10-01-pdf-d454640601

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rougier M (1981) Secretory activity at the root cap. In: Tanner W, Loews FA (eds) Encyclopedia of plant physiology, vol 13B, Plant carbohydrates II. Springer, New York, pp 542–574

    Google Scholar 

  • Svistoonoff S, Laplaze L, Auguy F, Runions J, Duponnois R, Haseloff J, Franche C, Bogusz D (2003) cg12 expression if specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata Actinorhizal nodule development. Mol Plant Microbe Interact 16(7):600–607

    Article  CAS  PubMed  Google Scholar 

  • Sylvia D, Fuhrmann J, Hartel P, Zuberer D (2005) Principles and applications of soil microbiology, vol 1. Pearson Education, Upper Saddle River, NJ, pp 167–180

    Google Scholar 

  • Trieu AT et al (1997) Gene expression in mycorrhizal roots of medicago truncatula. In: Flores HE et al (eds) Radical biology: advances and perspectives on the function of plant roots. American Society of Plant Physiologists, Rockville, MD, pp 498–500

    Google Scholar 

  • Tringe SG, Mering CV, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  CAS  PubMed  Google Scholar 

  • Van Etten HD et al (1994) Two classes of plant antibiotics: phytoalexins versus phytoanticipins. Plant Cell 6:1191–1192

    Article  Google Scholar 

  • Van West P et al (2002) Oomycete plant pathogens use electric fields to target roots. Mol Plant Microbe Interact 15:790–798

    Article  PubMed  Google Scholar 

  • Varma A, Hock B (1995) Mycorrhiza: structure, function, molecular biology, and biotechnology. Springer, Heidelberg, p 747

    Book  Google Scholar 

  • Vermeer J, Mc Cully ME (1982) The Rhizosheath of Zea—new insight into the structure and development. Planta 156:45–61

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2004) Root-bases N2-fixinng symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 266:205–230

    Article  CAS  Google Scholar 

  • Walker C (1995) AM or VAM: what’s in a word? In: Varma A, Hock B (eds) Mycorrhizas: structure, function, molecular biology and biotechnology. Springer, Heidelberg, pp 25–26

    Chapter  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • Zheng XY, Sinclair JB (1996) Chemotactic response of Bacillus megaterium strain b153-2-2 to soybean root and seed exudates. Physiol Mol Plant Pathol 48:21–35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shrivastava, S., Prasad, R., Varma, A. (2014). Anatomy of Root from Eyes of a Microbiologist. In: Morte, A., Varma, A. (eds) Root Engineering. Soil Biology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54276-3_1

Download citation

Publish with us

Policies and ethics