Skip to main content

Velocity-Based Cardiac Contractility Personalization with Derivative-Free Optimization

  • Conference paper
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2013)

Abstract

Cardiac contractility personalization from medical images is a major step for biophysical models to impact clinical practice. Existing gradient-based optimization approaches show promising results of identifying the maximum contractility from images, but the contraction and relaxation rates are not accounted for. A main reason is the limited choice of objective functions when their gradients are required. For complicated cardiac models, analytical evaluation of the gradient is very difficult if not impossible, and finite difference approximation may introduce numerical difficulties and is computationally expensive. We remove such limits by using derivative-free optimization, and propose a velocity-based objective function on identifying the maximum contraction, contraction rate, and relaxation rate simultaneously with intact model complexity. Experiments on synthetic data show that the parameters are better identified using the velocity-based optimization than the position-based one. Experiments on clinical data show that the framework can obtain personalized contractility consistent to the physiologies of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Germann, W.J., Stanfield, C.L.: Principles of Human Physiology. Pearson Benjamin Cummings (2005)

    Google Scholar 

  2. Hu, Z., Metaxas, D., Axel, L.: In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Medical Image Analysis 7(4), 435–444 (2003)

    Article  Google Scholar 

  3. Wang, V.Y., Lam, H.I., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Medical Image Analysis 13(5), 773–784 (2009)

    Article  Google Scholar 

  4. Xi, J., Lamata, P., Lee, J., Moireau, P., Chapelle, D., Smith, N.: Myocardial transversely isotropic material parameter estimation from in-silico measurements based on reduced-order unscented Kalman filter. Journal of the Mechanical Behavior of Biomedical Materials 4(7), 1090–1102 (2011)

    Article  Google Scholar 

  5. Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., Andriantsimiavona, R., Cimrman, R., Hill, D.L.G., Chapelle, D., Razavi, R.: Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Medical Image Analysis 10, 642–656 (2006)

    Article  Google Scholar 

  6. Sundar, H., Davatzikos, C., Biros, G.: Biomechanically-constrained 4D estimation of myocardial motion. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 257–265. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Delingette, H., Billet, F., Wong, K.C.L., Sermesant, M., Rhode, K., Ginks, M., Rinaldi, C.A., Razavi, R., Ayache, N.: Personalization of cardiac motion and contractility from images using variational data assimilation. IEEE Transactions on Biomedical Engineering 59(1), 20–24 (2012)

    Article  Google Scholar 

  8. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Technical report, DAMTP, University of Cambridge (2009)

    Google Scholar 

  9. Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulation. IEEE Transactions on Medical Imaging 25(5), 612–625 (2006)

    Article  Google Scholar 

  10. Relan, J., Chinchapatnam, P., Sermesant, M., Rhode, K., Ginks, M., Delingette, H., Rinaldi, C.A., Razavi, R., Ayache, N.: Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Journal of the Royal Society Interface Focus 1(3), 396–407 (2011)

    Article  Google Scholar 

  11. Moireau, P., Chapelle, D., Le Tallec, P.: Joint state and parameter estimation for distributed mechanical systems. Computer Methods in Applied Mechanics and Engineering 197(6-8), 659–677 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wong, K.C.L. et al. (2014). Velocity-Based Cardiac Contractility Personalization with Derivative-Free Optimization. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2013. Lecture Notes in Computer Science, vol 8330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54268-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54268-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54267-1

  • Online ISBN: 978-3-642-54268-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics