Skip to main content

Mechanical Behaviour of Al 6061-T6 Aluminium Alloy Under Large Strain and Failure

  • Chapter
  • First Online:
Numerical Modeling of Materials Under Extreme Conditions

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 35))

Abstract

Severe and extreme loads, that introduce large strains and failure, are a present challenge in the design of critical mechanical components. Even though full scale testing is a fundamental approach for reliable structural integrity evaluation, numerical simulation is an alternative economical method that is now increasingly chosen especially because of the development of computing performances. In particular, the numerical assessment of the ductile fracture in metallic components represents an innovative and challenging field in the structural integrity scenario. Aerospace, automotive and manufacturing industries have recently boosted their interest in these kinds of simulations with the aim to make these approaches, little by little, reliable also for certifications. Taking the requirement to characterize material for further impact simulations as a starting point, the work described in this chapter contains a complete characterization of the mechanical properties of Al 6061-T6 aluminium alloy as far as material hardening and fracture locus are concerned. The calibration has been carried out through a series of experimental tests on simple specimens. These specimens have similar geometry, but are subjected to different stress triaxiality, thanks to the use of a multiaxial hydraulic test machine. All the experimental tests have been numerically simulated and a complete material constitutive model has been calibrated, which based on the results of these experimental analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao, Y., Wierzbicki, T.: A comparative study on various ductile crack formation criteria. J. Eng. Mater. Technol. 126(3), 314–324 (2004)

    Article  Google Scholar 

  2. Gurson, A.L.: Plastic flow and fracture behaviour of ductile materials incorporating void nucleation, growth and interaction. Ph.D. Thesis, Brown University (1975)

    Google Scholar 

  3. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part 1-yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  4. McClintock, F.A.: A criterion of ductile fracture by the growth of holes. J. Appl. Mech. 35, 363–371 (1968)

    Article  Google Scholar 

  5. Cockcroft, M.G., Latham, D.J.: Ductility and the workability of metals. J. Inst. Met. 96, 33–39 (1968)

    Google Scholar 

  6. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)

    Article  Google Scholar 

  7. Brunig, M., Chyra, O., Albrecht, D., Driemeier, L., Alves, M.: A ductile damage criterion at various stress triaxialities. Int. J. Plast. 24, 1731–1755 (2008)

    Article  Google Scholar 

  8. Coppola, T., Cortese, L., Folgarait, P.: The effect of stress invariants on ductile fracture limit in steels. Eng. Fract. Mech. 76, 1288–1302 (2009)

    Article  Google Scholar 

  9. Bonora, N.: A non-linear CDM model for ductile failure. Eng. Fract. Mech. 58, 11–28 (1997)

    Article  Google Scholar 

  10. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985)

    Article  Google Scholar 

  11. Bonora, N., Ruggero, A., Esposito, L., Gentile, D.: CDM modeling of ductile failure in ferritic steels: assessment of the geometry transferability of model parameters. Int. J. Plast. 22, 2015–2047 (2006)

    Article  Google Scholar 

  12. Bonora, N., Gentile, D., Pirondi, A., Newaz, G.: Ductile damage evolution under triaxial state of stress: theory and experiments. Int. J. Plast. 21, 981–1007 (2005)

    Article  Google Scholar 

  13. Chiantoni, G., Bonora, N., Ruggero, A.: Experimental study of the effect of triaxiality ratio on the formability limit diagram and ductile damage evolution in steel and high purity copper. Int. J. Mater. Form. 3(1), 171–174 (2010)

    Article  Google Scholar 

  14. www.matweb.com

  15. Colombo, D., Giglio, M.: Numerical analysis of thin-walled shaft perforation by projectile, pp. 1264–1280. Computers & Structures, Elsevier Applied Science (2007)

    Google Scholar 

  16. Follansbee, P.S., Kocks, U.F.: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall. Mater. 36(1), 81–93 (1988)

    Article  Google Scholar 

  17. Goto, D.M., Bingert, J.F., Chen, S.R., Gray III, G.T., Garrett Jr, R.K.: The mechanical threshold stress constitutive strength model description of HY-100. Metall. Mater. Trans. A 31a, 1985–1996

    Google Scholar 

  18. Campagne, L., Daridon, L., Ahzi, S.: A physically based model for dynamic failure in ductile metals. Mech. Mater. 37, 869–886 (2005)

    Article  Google Scholar 

  19. Clausen, A.H., Börvik, T., Hopperstad, O.S., Benallal, A.: Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Mater. Sci. Eng. A 364, 260–272 (2004)

    Article  Google Scholar 

  20. Børvik, T., Hopperstad, O.S., Berstad, T., Langseth, M.: A computational model of viscoplasticity and ductile damage for impact and penetration. Eur. J. Mech. A-Solid 20, 685–712 (2001)

    Article  Google Scholar 

  21. Johnson, G.R., Holmquist, T.J.: Test data and computational strength and fracture model constants for 23 materials subjected to large strain, high-strain rates, and high temperatures. Technical Report LA-11463-MS, Los Alamos National Laboratory (1989)

    Google Scholar 

  22. Lesuer, D.R., Kay, G.J., LeBlanc, M.M.: Modeling large-strain, high rate deformation in metals. UCRL-JC-134118, Lawrence Livermore National Laboratory (2001)

    Google Scholar 

  23. Zukas, J.A.: High Velocity Impact Dynamics. Wiley, London (1990)

    Google Scholar 

  24. Meyers, M.A.: Dynamic Behavior of Materials. Wiley, New York (1994)

    Book  Google Scholar 

  25. Bao, Y., Wierzbicki, T.: Bridgman revisited: on the history effects on ductile fracture. J. Mech. Phys. Solids (2004)

    Google Scholar 

  26. Clausing, D.P.: Effect of plastic strain state on ductility and toughness. Int. J. Fract.Mech. 6, 71–85 (1970)

    Google Scholar 

  27. McClintock, F.A.: Plasticity aspects of fracture. In: Liebowitz, H. (Ed.) Fracture, Vol. 3, pp 47-225. Academic Press, New York (1971)

    Google Scholar 

  28. Mirone, G.: Role of stress triaxiality in elastoplastic characterization and ductile failure prediction. Eng. Fract. Mech. 74, 1203–1221 (2007)

    Article  Google Scholar 

  29. Driemeier, L., Brunig, M., Micheli, G., Alves, M.: Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mech. Mater. 42, 207–217 (2010)

    Article  Google Scholar 

  30. Li, H., Fu, M.W., Lu, J., Yang, H.: Ductile fracture: experiments and computations. Int. J. Plast. 27, 147–180 (2011)

    Article  Google Scholar 

  31. Hopperstad, O.S., Börvik, T., Langseth, M., Labibes, K., Albertini, C.: On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part I: experiments. Eur. J. Mech. A-Solid 22, 1–13 (2003)

    Google Scholar 

  32. Börvik, T., Hopperstad, O.S., Berstad, T., Langseth, M.: Numerical simulation of plugging failure in ballistic penetration. Int. J. Solids Struct. 38(34–35), 6241–6264 (2001)

    Article  Google Scholar 

  33. Bao, Y., Wierzbicki, T.: On the cut-off value of negative stress triaxiality for fracture. Eng. Fract. Mech. 72, 1049–1069 (2005)

    Article  Google Scholar 

  34. Dabboussi, W., Nemes, J.A.: Modeling of ductile fracture using the dynamic punch test. Int. J. Mech. Sci. 47, 1282–1299 (2005)

    Article  Google Scholar 

  35. Zukas, J.A., Nicholas, T., Swift, H.F.: Impact Dynamics. Wiley, New York (1982)

    Google Scholar 

  36. Li, K., Goldsmith, W.: Impact on aluminium plates by tumbling projectiles: experimental study. Int. J. Impact Eng. 18(1), 23–43 (1996)

    Article  Google Scholar 

  37. Giudici, L., Manes, A., Giglio, M.: Ballistic impact on a tail rotor transmission shaft for helicopter. In: International Conference Ballistic 2010, Beijing, 17–21 May 2010 (China)

    Google Scholar 

  38. Manes, A., Magrassi, G., Giglio, M., Bordegoni, M.: Reverse engineering of experimental tests results of ballistic impact for the validation of finite element simulations. In: ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Giglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giglio, M., Gilioli, A., Manes, A. (2014). Mechanical Behaviour of Al 6061-T6 Aluminium Alloy Under Large Strain and Failure. In: Bonora, N., Brown, E. (eds) Numerical Modeling of Materials Under Extreme Conditions. Advanced Structured Materials, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54258-9_7

Download citation

Publish with us

Policies and ethics