Skip to main content

Multiscale Modeling of the Effect of Very Large Strain on the Microstructure Evolution and Ductility of Microalloyed Steels

  • Chapter
  • First Online:
Numerical Modeling of Materials Under Extreme Conditions

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 35))

  • 1284 Accesses

Abstract

This study addresses some aspects regarding mechanical behavior of bcc structures characterized by high grain refinement level developed using large plastic deformation. The fundamental mechanisms governing the behavior of the microalloyed steels at wide range of deformation conditions at nano, micro, meso-meter scale and at the continuum are discussed. Grain refinement levels, where the change in the ability of grains to strain hardening is observed, are identified with respect to the resulting changes in the meso and macro levels effects of precipitation and solid solution strengthening mechanisms. Differences in the description of strengthening mechanisms and ductility represented by maximum uniform elongation of ultrafine-grained (UFG) and nanocrystalline materials are also defined. Existing flow stress models for UFG materials are presented and their physical bases are discussed with respect to their application in the computer modeling process of mechanical behavior of bcc structures strengthened by alloying elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandrov, I.V.: Mater. Sci. Forum 584586 (2008)

    Google Scholar 

  2. Belyakov, A., Sakai, T., Miura, H.: Mater. Trans. JIM 41 (2000)

    Google Scholar 

  3. Conrad, H.: Mater. Sci. Eng. A 341 (2003)

    Google Scholar 

  4. Considère, A.: Mèmoire sur l’emploi du fer et de l’acier dans les constructions, pp. 5–149. Paris Press, Paris (1886)

    Google Scholar 

  5. Copreaux, J., Lanteri, S., Schmitt, J.-H.: Mater. Sci. Eng. A 164 (1993)

    Google Scholar 

  6. De Borst, R.: Comput. Mater. Sci. 43 (2008)

    Google Scholar 

  7. Hall, E.O.: Proc. Phys. Soc. London Sect. B 64 (1951)

    Google Scholar 

  8. Hansen, N.: Scr. Mater. 51 (2004)

    Google Scholar 

  9. Hansen, N.: Mater. Sci. Eng. A 409 (2005)

    Google Scholar 

  10. Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn, pp. 5–857. Wiley, New York (1982)

    Google Scholar 

  11. Holt, D.L.: Appl. Phys. 41 (1970)

    Google Scholar 

  12. Howe, A.A.: Mater. Sci. Technol. 25 (2009)

    Google Scholar 

  13. Humphreys, F.J., Chan, F.M.: Mater. Sci. Technol. 12 (1996)

    Google Scholar 

  14. Jazaeri, H., Humphreys, F.J.: Acta Mater. 52 (2004)

    Google Scholar 

  15. Jia, D., Ramesh, K.T., Ma, E.: Acta. Mater. 51 (2003)

    Google Scholar 

  16. Khan, A.S., Huang, S.: Int. J. Plast. 8 (1992)

    Google Scholar 

  17. Khan, A.S., Suh, Y.S., Chen X., et al.: Int. J. Plast. 22 (2006)

    Google Scholar 

  18. Ko, Y.G., Shin, D.H., Park, K.-T., et al.: Scr. Mater. 54 (2006)

    Google Scholar 

  19. Kocks, U.F., Canova, G.R.: In: Hansen, N., Leffers, T., Lilholt, H. (eds.) Deformation of Polycrystals: Mechanisms and Microstructures, p. 185. Riso National Laboratory, Roskilde (1981)

    Google Scholar 

  20. Ma, E.: JOM 58(4), 49–53 (2006)

    Article  Google Scholar 

  21. Madej, Ł.: Development of the Modeling Strategy for the Strain Localization Simulation Based on the Digital Material Representation, pp. 124–140. AGH University Press, Krakow (2010)

    Google Scholar 

  22. Madej, Ł., Rauch, Ł., Yang, R.: Arch. Metall. Mater. Sci. 54 (2009)

    Google Scholar 

  23. Majta, J., Doniec, K., Muszka, K.: Mater. Sci. Forum 638642 (2010)

    Google Scholar 

  24. Majta, J., Muszka, K.: Mater. Sci. Eng. A 464 (2007)

    Google Scholar 

  25. Majta, J., Pietrzyk, M., Lenard, J.G.: Mater. Sci. Eng. A 208 (1996)

    Google Scholar 

  26. Muszka, K., Doniec, K., Majta, J.: Comput. Meth. Mater. Sci. 9 (2009)

    Google Scholar 

  27. Muszka, K., Hodgson, P.D., Majta, J.: J. Mater. Process. Technol. 177 (2006)

    Google Scholar 

  28. Muszka, K., Hodgson, P.D.: J. Majta, Mater. Sci. Eng. A 500 (2009)

    Google Scholar 

  29. Muszka, K., Majta, J., Hodgson, P.D.: ISIJ Int. 47 (2007)

    Google Scholar 

  30. Nes, E., Marthinsen, K., Holmedal, B.: Mater. Sci. Technol. 20 (2004)

    Google Scholar 

  31. Oscarsson, A., Hutchinson, B., Nicol B., et al.: Mater. Sci. Forum 157162 (1994)

    Google Scholar 

  32. Petch, N.J.: J. Iron Steel Inst. 174 (1953)

    Google Scholar 

  33. Sellars, C.M.: In: Rodriguez-Ibabe, J.M., Gutierrez, I., Lopez, B. (eds.) Modelling Strain Induced Precipitation of Niobium Carbonitride during Hot Rolling of Microalloyed Steel. Materials Science Forum, vol. 500–501, p. 73. TTP, Donostia-San Sebastian (1998)

    Google Scholar 

  34. da Silva, M.G., Ramesh, K.T.: Int J Plast 13 (1997)

    Google Scholar 

  35. Song, R., Ponge, D., Raabe, D., Speer, J.G., Matlock, D.K.: Mater. Sci. Eng. A 441 (2006)

    Google Scholar 

  36. Takayama, A., Yang, X., Miura, H. et al.: Mater. Sci. Eng A 478 (2008)

    Google Scholar 

  37. Taylor, G.I.: J. Jpn. Inst. Met. 62 (1938)

    Google Scholar 

Download references

Acknowledgments

The financial support of MNiSW (Grant no. N N508 3982 37) is gratefully acknowledged. Authors are grateful to Dr. Ł. Madej from AGH University of Science and Technology for generation FEM meshes of grained structures using DMR software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Muszka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muszka, K., Majta, J. (2014). Multiscale Modeling of the Effect of Very Large Strain on the Microstructure Evolution and Ductility of Microalloyed Steels. In: Bonora, N., Brown, E. (eds) Numerical Modeling of Materials Under Extreme Conditions. Advanced Structured Materials, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54258-9_6

Download citation

Publish with us

Policies and ethics