Skip to main content

Simulation of Thermal and Electrical Transport in Nanotube and Nanowire Composites

  • Chapter
  • First Online:
Numerical Modeling of Materials Under Extreme Conditions

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 35))

  • 1325 Accesses

Abstract

Nanotube-based thin-film composites promise significant improvement over existing technologies in the performance of large-area macroelectronics, flexible electronics, energy harvesting and storage, and in bio-chemical sensing applications. We present an overview of recent research on the electrical and thermal performance of thin-film composites composed of random 2D dispersions of nanotubes in a host matrix. Results from direct simulations of electrical and thermal transport in these composites using a finite volume method are compared to those using an effective medium approximation. The role of contact physics and percolation in influencing electrical and thermal behavior are explored. The effect of heterogeneous networks of semiconducting and metallic tubes on the transport properties of the thin film composites is investigated. Transport through a network of nanotubes is dominated by the interfacial resistance at the contact of two tubes. We explore the interfacial thermal interaction between two carbon nanotubes in a crossed configuration using molecular dynamics simulation and wavelet methods. We pass a high temperature pulse along one of the nanotubes and investigate the energy transfer to the other tube. Wavelet transformations of heat pulses show that how different phonon modes are excited and how they evolve and propagate along the tube axis depending on its chirality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hur, S.H., Kocabas, C., Gaur, A., et al.: Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks. J. Appl. Phys. 98(11), 114302 (2005)

    Article  Google Scholar 

  2. Reuss, R.H., Chalamala, B.R., Moussessian, A., et al.: Macroelectronics: perspectives on technology and applications. Proc. IEEE 93(7), 1239–1256 (2005)

    Article  Google Scholar 

  3. Collins, P.C., Arnold, M.S., Avouris, P.: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517), 706–709 (2001)

    Article  Google Scholar 

  4. Kagan, C.R., Andry, P.: Thin film transistors. Marcel Dekker, New York (2003)

    Book  Google Scholar 

  5. Novak, J.P., Snow, E.S., Houser, E.J., et al.: Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83(19), 4026–4028 (2003)

    Article  Google Scholar 

  6. Alam, M.A., Nair, P.R.: Geometry of diffusion and the performance limits of nanobiosensors. Nanotechnology 501 lecture series. https://www.nanohub.org/resources/2048/(2006)

  7. Madelung, O.: Technology and applications of amorphous silicon. Springer, Berlin (2000)

    Google Scholar 

  8. Zhou, Y.X., Gaur, A., Hur, S.H., et al.: P-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 4(10), 2031–2035 (2004)

    Article  Google Scholar 

  9. Snow, E.S., Campbell, P.M., Ancona, M.G., et al.: High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 86(3), 066802 (2005)

    Article  Google Scholar 

  10. Snow, E.S., Novak, J.P., Lay, M.D., et al.: Carbon nanotube networks: nanomaterial for macroelectronic applications. J. Vac. Sci. Technol. B 22(4), 1990–1994 (2004)

    Article  Google Scholar 

  11. Snow, E.S., Novak, J.P., Campbell, P.M., et al.: Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82(13), 2145–2147 (2003)

    Article  Google Scholar 

  12. Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21(1), 29–53 (2009)

    Article  Google Scholar 

  13. Kumar, S., Murthy, J.Y., Alam, M.A.: Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 95(6), 066802 (2005)

    Article  Google Scholar 

  14. Hur, S.H., Khang, D.Y., Kocabas, C., et al.: Nanotransfer printing by use of noncovalent surface forces: applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers. Appl. Phys. Lett. 85(23), 5730–5732 (2004)

    Article  Google Scholar 

  15. Kocabas, C., Hur, S.H., Gaur, A., et al.: Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11), 1110–1116 (2005)

    Article  Google Scholar 

  16. Kocabas, C., Shim, M., Rogers, J.A.: Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 128(14), 4540–4541 (2006)

    Article  Google Scholar 

  17. Milton, G.W.: The Theory of Composites. Cambridge University Press, New York (2002)

    Book  Google Scholar 

  18. Nan, C.W., Birringer, R., Clarke, D.R., et al.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692–6699 (1997)

    Article  Google Scholar 

  19. Kumar, S., Alam, M.A., Murthy, J.Y.: Computational model for transport in nanotube-based composites with applications to flexible electronics. ASME J. Heat Transf. 129(4), 500–508 (2007)

    Article  Google Scholar 

  20. Kumar, S., Pimparkar, N., Murthy, J.Y., et al.: Theory of transfer characteristics of nanotube network transistors. Appl. Phys. Lett. 88, 123505 (2006)

    Article  Google Scholar 

  21. Zhang, G., Qi, P., Wang, X., et al.: Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314, 974–977 (2006)

    Article  Google Scholar 

  22. Arnold, M.S., Green, A.A., Hulvat, J.F., et al.: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006)

    Article  Google Scholar 

  23. Huang, H., Liu, C., Wu, Y., et al.: Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17, 1652 (2005)

    Article  Google Scholar 

  24. Nan, C.W., Liu, G., Lin, Y.H., et al.: Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85(16), 3549–3551 (2004)

    Article  Google Scholar 

  25. Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., et al.: Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)

    Article  Google Scholar 

  26. Xu, X.J., Thwe, M.M., Shearwood, C., et al.: Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl. Phys. Lett. 81(15), 2833–2835 (2002)

    Article  Google Scholar 

  27. Reibold, M., Paufler, P., Levin, A.A., et al.: Carbon nanotubes in an ancient damascus sabre. Nature 444(16), 286 (2006)

    Article  Google Scholar 

  28. Hu, L., Hecht, D.S., Gruner, G.: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4(12), 2513–2517 (2004)

    Article  Google Scholar 

  29. Keblinski, P., Cleri, F.: Contact resistance in percolating networks. Phys. Rev. B 69(18), 184201 (2004)

    Article  Google Scholar 

  30. Hu, T., Grosberg, A.Y., Shklovskii, B.I.: Conductivity of a suspension of nanowires in a weakly conducting medium. Phys. Rev. B 73(15), 155434 (2006)

    Article  Google Scholar 

  31. Lukes, J.R., Zhong, H.L.: Thermal conductivity of individual single-wall carbon nanotubes. J. Heat Transf. Trans. ASME 129(6), 705–716 (2007)

    Article  Google Scholar 

  32. Maruyama, S., Igarashi, Y., Shibuta, Y.: Molecular dynamics simulations of heat transfer issues in carbon nanotubes. In: The 1st International Symposium on Micro and Nano Technology. Honolulu, Hawaii, USA (2004)

    Google Scholar 

  33. Small, J.P., Shi, L., Kim, P.: Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun. 127(2), 181–186 (2003)

    Article  Google Scholar 

  34. Maune, H., Chiu, H.Y., Bockrath, M.: Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates. Appl. Phys. Lett. 89(1), 013109 (2006)

    Article  Google Scholar 

  35. Carlborg, C.F., Shiomi, J., Maruyama, S.: Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices. Phys. Rev. B 78(20), 205406 (2008)

    Google Scholar 

  36. Zhong, H.L., Lukes, J.R.: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 74(12), 125403 (2006)

    Article  Google Scholar 

  37. Greaney, P.A., Grossman, J.C.: Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes. Phys. Rev. Lett. 98(12), 125503 (2007)

    Article  Google Scholar 

  38. Prasher, R.S., Hu, X.J., Chalopin, Y., et al.: Turning carbon nanotubes from exceptional heat conductors into insulators. Phys. Rev. Lett. 102, 105901 (2009)

    Article  Google Scholar 

  39. Pimparkar, N., Kumar, S., Murthy, J.Y., et al.: Current-voltage characteristics of long-channel nanobundle thin-film transistors: A ‘bottom-up’ perspective. IEEE Electron Device Lett. 28(2), 157–160 (2006)

    Article  Google Scholar 

  40. Bo, X.Z., Lee, C.Y., Strano, M.S., et al.: Carbon nanotubes-semiconductor networks for organic electronics: the pickup stick transistor. Appl. Phys. Lett. 86(18), 182102 (2005)

    Article  Google Scholar 

  41. Kumar, S., Blanchet, G.B., Hybertsen, M.S., et al.: Performance of carbon nanotube-dispersed thin-film transistors. Appl. Phys. Lett. 89(14), 143501 (2006)

    Article  Google Scholar 

  42. Kundert, K.S.: Sparse user’s guide. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (1988)

    Google Scholar 

  43. Pike, G.E., Seager, C.H.: Percolation and conductivity—computer study 1. Phys. Rev. B 10(4), 1421–1434 (1974)

    Article  Google Scholar 

  44. Alam, M.A.: Nanostructured electronic devices: percolation and reliability. Intel-purdue summer school on electronics from bottom up. http://nanohub.org/resources/7168 (2009)

  45. Foygel, M., Morris, R.D., Anez, D., et al.: Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys. Rev. B 71(10), 104201 (2005)

    Article  Google Scholar 

  46. Foygel, M., Morris, R.D., Anez, D., et al.: Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys. Rev. B 71(10), 104201 (2005)

    Article  Google Scholar 

  47. Shenogina, N., Shenogin, S., Xue, L., et al.: On the lack of thermal percolation in carbon nanotube composites. Appl. Phys. Lett. 87(13), 133106 (2005)

    Article  Google Scholar 

  48. Frank, D.J., Lobb, C.J.: Highly efficient algorithm for percolative transport studies in 2 dimensions. Phys. Rev. B 37(1), 302–307 (1988)

    Article  Google Scholar 

  49. Lobb, C.J., Frank, D.J.: Percolative conduction and the alexander-orbach conjecture in 2 dimensions. Phys. Rev. B 30(7), 4090–4092 (1984)

    Article  Google Scholar 

  50. Pimparkar, N., Alam, M.A.: A “Bottom-up” redefinition for mobility and the effect of poor tube-tube contact on the performance of CNT nanonet thin-film transistors. IEEE Electron Device Lett. 29(9), 1037–1039 (2008)

    Article  Google Scholar 

  51. Taur, Y., Ning, T.: Fundamentals of modern VLSI devices. Cambridge University Press, New York (1998)

    Google Scholar 

  52. Fuhrer, M.S., Nygard, J., Shih, L., et al.: Crossed nanotube junctions. Science 288(5465), 494–497 (2000)

    Article  Google Scholar 

  53. Seidel, R.V., Graham, A.P., Rajasekharan, B., et al.: Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. J. Appl. Phys. 96(11), 6694–6699 (2004)

    Article  Google Scholar 

  54. Huxtable, S.T., Cahill, D.G., Shenogin, S., et al.: Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2(11), 731–734 (2003)

    Article  Google Scholar 

  55. Kumar, S., Alam, M.A., Murthy, J.Y.: Effect of percolation on thermal transport in nanotube composites. Appl. Phys. Lett. 90(10), 104105 (2007)

    Article  Google Scholar 

  56. Bryning, M.B., Milkie, D.E., Islam, M.F., et al.: Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 87(16), 161909 (2005)

    Article  Google Scholar 

  57. Hung, M.T., Choi, O., Ju, Y.S., et al.: Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl. Phys. Lett. 89(2), 023117 (2006)

    Article  Google Scholar 

  58. Kumar, S., Murthy, J.Y.: Interfacial thermal transport between nanotubes. J. Appl. Phys. 106(8), 084302 (2009)

    Article  Google Scholar 

  59. Brenner, D.W., Shenderova, O.A., Harrison, J.A., et al.: A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14(4), 783–802 (2002)

    Article  Google Scholar 

  60. Osman, M.A., Srivastava, D.: Molecular dynamics simulation of heat pulse propagation in single-wall carbon nanotubes. Phys. Rev. B 72(12), 125413 (2005)

    Article  Google Scholar 

  61. Erhart, P., Albe, K.: The role of thermostats in modeling vapor phase condensation of silicon nanoparticles. Appl. Surf. Sci. 226(1–3), 12–18 (2004)

    Article  Google Scholar 

  62. Shiomi, J., Maruyama, S.: Non-fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations. Phys. Rev. B 73(20), 205420 (2006)

    Article  Google Scholar 

  63. Lau, K.M., Weng, H.: Climate signal detection using wavelet transform: How to make a time series sing. Bull. Am. Meteorol. Soc. 76(12), 2391–2402 (1995)

    Article  Google Scholar 

  64. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)

    Article  Google Scholar 

  65. Liu, C.H., Huang, H., Wu, Y., et al.: Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl. Phys. Lett. 84(21), 4248–4250 (2004)

    Article  Google Scholar 

  66. Gong, Q.M., Li, Z., Bai, X.D., et al.: Thermal properties of aligned carbon nanotube/carbon nanocomposites. Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process. 384(1–2), 209–214 (2004)

    Article  Google Scholar 

  67. Choi, S.U.S., Zhang, Z.G., Yu, W., et al.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79(14), 2252–2254 (2001)

    Article  Google Scholar 

  68. Wen, D.S., Ding, Y.L.: Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotubes nanofluids). J. Thermophys. Heat Transf. 18(4), 481–485 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

Support of J. Murthy and S. Kumar under NSF grants CTS-0312420, CTS-0219098, EE-0228390, the Purdue Research Foundation and Purdue’s Network for Computational Nanotechnology (NCN) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, S., Alam, M.A., Murthy, J.Y. (2014). Simulation of Thermal and Electrical Transport in Nanotube and Nanowire Composites. In: Bonora, N., Brown, E. (eds) Numerical Modeling of Materials Under Extreme Conditions. Advanced Structured Materials, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54258-9_3

Download citation

Publish with us

Policies and ethics