Skip to main content

Applied Design Optimization of Nose Landing Gear Cabin Structure of Airplane

  • Conference paper
  • First Online:
Proceedings of the First Symposium on Aviation Maintenance and Management-Volume II

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 297))

  • 2381 Accesses

Abstract

Based on structure dynamics finite element method (FEM) numerical analysis, and optimal design methods, this paper analyzed the finite element modeling of cabin structure of nose landing gear and discussed optimal design of structural parameter. The main research work conducted included the following: Finite element discretization of structure of nose landing gear, construction of finite element model, optimal variable design, optimal design for component dimension parameter of structural low-order frequency property in numerical value technique frame, lightest structural weight under low-order frequency restriction conditions, and best geometrical stiffness structure distributing. The thesis introduced in details the structure dynamic characteristic finite element mesh adopted in performance calculation as well as the structure numerical optimal theory and discussed every detail of optical design for numerical value of intrinsic dynamic characteristics and the optimal analysis results. At the end of the paper, the author proposes the conclusion of the research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walker N, Philbin DA, Fisk AD (1997) Age-related differences in movement control: adjusting submovement structure to optimize performance. J Gerontol Ser B: Psychol Sci Soc Sci 52:40–53

    Google Scholar 

  2. Pu X, Liu X, Qiu F et al (2004) Novel method to optimize the structure of reticulated porous ceramics. J Am Ceram Soc 87:1392–1394

    Article  Google Scholar 

  3. Chu DN, Xie YM, Hira A et al (1996) Evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 21:239–251

    Article  MATH  Google Scholar 

  4. Xie YM, Steven GP (1997) Basic evolutionary structural optimization. Springer, London

    Book  Google Scholar 

  5. Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Meth Eng 23:409–428

    Article  MATH  MathSciNet  Google Scholar 

  6. Fadel GM, Riley MF, Barthelemy JM (1990) Two point exponential approximation method for structural optimization. Struct Optim 2:117–124

    Article  Google Scholar 

  7. Ha SK, Keilers C, Chang FK (1992) Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators. AIAA J 30:772–780

    Article  MATH  Google Scholar 

  8. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Meth Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  9. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896

    Article  Google Scholar 

  10. Toropov VV (1989) Simulation approach to structural optimization. Struct Optim 1:37–46

    Article  Google Scholar 

  11. Barthelemy JF, Haftka RT (1993) Approximation concepts for optimum structural design—a review. Struct Optim 5:129–144

    Article  Google Scholar 

  12. Hale AL, Dahl WE, Lisowski J (1985) Optimal simultaneous structural and control design of maneuvering flexible spacecraft. J Guidance Control Dyn 8:86–93

    Article  Google Scholar 

  13. Kicinger R, Arciszewski T, Jong KD (2005) Evolutionary computation and structural design: a survey of the state-of-the-art. Comput Struct 83:1943–1978

    Article  Google Scholar 

  14. Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85:1579–1588

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tian, W., Sun, Q. (2014). Applied Design Optimization of Nose Landing Gear Cabin Structure of Airplane. In: Wang, J. (eds) Proceedings of the First Symposium on Aviation Maintenance and Management-Volume II. Lecture Notes in Electrical Engineering, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54233-6_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54233-6_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54232-9

  • Online ISBN: 978-3-642-54233-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics