Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 222))

Abstract

Human canonical transient receptor potential channel 5 (TRPC5) has been cloned from the Xq23 region on chromosome X as a suspect in nonsyndromic mental retardation. TRPC5 is a Ca2+-permeable cation channel predominantly expressed in the CNS, including the hippocampus, cerebellum, amygdala, sensory neurons, and retina. It also shows more restricted expression in the periphery, notably in the kidney and cardiovascular system. Homotetrameric TRPC5 channels are primarily activated by receptors coupled to Gq and phospholipase C and/or Gi proteins, but TRPC5 channels may also gate in a store-dependent manner, which requires other partner proteins such TRPC1, STIM1, and Orai1. There is an impressive array of other activators of TRPC5 channels, such as nitric oxide, lysophospholipids, sphingosine-1-phosphate, reduced thioredoxin, protons, lanthanides, and calcium, and many can cause its direct activation. Moreover, TRPC5 shows constitutive activity, and it is responsive to membrane stretch and cold. Thus, TRPC5 channels have significant potential for synergistic activation and may serve as an important focal point in Ca2+ signalling and electrogenesis. Moreover, TRPC5 functions in partnership with about 60 proteins, including TRPC1, TRPC4, calmodulin, IP3 receptors, NHERF, NCS-1, junctate, stathmin 2, Ca2+-binding protein 1, caveolin, and SESTD1, while its desensitisation is mediated by both protein kinases A and C. TRPC5 has a distinct voltage dependence shared only with its closest relative, TRPC4. Its unique N-shaped activation curve underlined by intracellular Mg2+ block seems to be perfectly “shaped” to trigger action potential discharge, but not to grossly interfere with the action potential shape. The range of biological functions of TRPC5 channels is also impressive, from neurotransmission to control of axon guidance and vascular smooth muscle cell migration and contractility. Recent studies of Trpc5 gene knockouts begin to uncover its roles in fear, anxiety, seizures, and cold sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeele FV, Zholos A, Bidaux G et al (2006) Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J Biol Chem 281:40174–40182

    Google Scholar 

  • Ahmmed GU, Malik AB (2005) Functional role of TRPC channels in the regulation of endothelial permeability. Pflugers Arch 451:131–142

    PubMed  CAS  Google Scholar 

  • Albert AP, Large WA (2006) Signal transduction pathways and gating mechanisms of native TRP-like cation channels in vascular myocytes. J Physiol 570:45–51

    PubMed Central  PubMed  CAS  Google Scholar 

  • Albert AP, Saleh SN, Peppiatt-Wildman CM et al (2007) Multiple activation mechanisms of store-operated TRPC channels in smooth muscle cells. J Physiol 583:25–36

    PubMed Central  PubMed  CAS  Google Scholar 

  • Albert AP, Saleh SN, Large WA (2009) Identification of canonical transient receptor potential (TRPC) channel proteins in native vascular smooth muscle cells. Curr Med Chem 16:1158–1165

    PubMed  CAS  Google Scholar 

  • Ambudkar IS, Ong HL (2007) Organization and function of TRPC channelosomes. Pflugers Arch 455:187–200

    PubMed  CAS  Google Scholar 

  • Ambudkar IS, Bandyopadhyay BC, Liu X et al (2006) Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains. Cell Calcium 40:495–504

    PubMed  CAS  Google Scholar 

  • Beck A, Speicher T, Stoerger C et al (2013) Conserved gating elements in TRPC4 and TRPC5 channels. J Biol Chem 288:19471–19483

    PubMed  CAS  Google Scholar 

  • Beech DJ (2005) Emerging functions of 10 types of TRP cationic channel in vascular smooth muscle. Clin Exp Pharmacol Physiol 32:597–603

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beech DJ (2012a) Integration of transient receptor potential canonical channels with lipids. Acta Physiol 204:227–237

    CAS  Google Scholar 

  • Beech D (2012b) Orai1 calcium channels in the vasculature. Pflugers Arch 463:635–647

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beech DJ, Muraki K, Flemming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559:685–706

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beech DJ, Bahnasi YM, Dedman AM et al (2009) TRPC channel lipid specificity and mechanisms of lipid regulation. Cell Calcium 45:583–588

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bezzerides VJ, Ramsey IS, Kotecha S et al (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720

    PubMed  CAS  Google Scholar 

  • Blair NT, Kaczmarek JS, Clapham DE (2009) Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J Gen Physiol 133:525–546

    PubMed Central  PubMed  CAS  Google Scholar 

  • Boisseau S, Kunert-Keil C, Lucke S et al (2009) Heterogeneous distribution of TRPC proteins in the embryonic cortex. Histochem Cell Biol 131:355–363

    PubMed  CAS  Google Scholar 

  • Bush EW, Hood DB, Papst PJ et al (2006) Canonical Transient Receptor Potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496

    PubMed  CAS  Google Scholar 

  • Chaudhuri P, Colles SM, Bhat M et al (2008) Elucidation of a TRPC6-TRPC5 channel cascade that restricts endothelial cell movement. Mol Biol Cell 19:3203–3211

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chung YH, Sun Ahn H, Kim D et al (2006) Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res 1085:132–137

    PubMed  CAS  Google Scholar 

  • Chung YH, Kim D, Moon NJ et al (2007) Immunohistochemical study on the distribution of canonical transient receptor potential channels in rat basal ganglia. Neurosci Lett 422:18–23

    PubMed  CAS  Google Scholar 

  • Cioffi DL, Wu S, Alexeyev M et al (2005) Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 97:1164–1172

    PubMed  CAS  Google Scholar 

  • Dasari S, Abramowitz J, Birnbaumer L et al (2013) Do canonical transient receptor potential channels mediate cholinergic excitation of cortical pyramidal neurons? Neuroreport 24:550–554

    PubMed  Google Scholar 

  • Dattilo M, Penington NJ, Williams K (2008) Inhibition of TRPC5 channels by intracellular ATP. Mol Pharmacol 73:42–49

    PubMed  CAS  Google Scholar 

  • De March Z, Giampа C, Patassini S et al (2006) Cellular localization of TRPC5 in the substantia nigra of rat. Neurosci Lett 402:35–39

    PubMed  Google Scholar 

  • DeHaven WI, Jones BF, Petranka JG et al (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dietrich A, Chubanov V, Kalwa H et al (2006) Cation channels of the transient receptor potential superfamily: Their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112:744–760

    PubMed  CAS  Google Scholar 

  • Eder P, Schindl R, Romanin C et al (2007) Protein–protein interactions in TRPC channel complexes. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signaling cascades. CRC Press, Boca Raton (FL), Chapter 24

    Google Scholar 

  • El-Hassar L, Hagenston AM, D'Angelo LB et al (2011) Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca2+ wave-dependent activation of SK and TRPC channels. J Physiol 589:3211–3229

    PubMed Central  PubMed  CAS  Google Scholar 

  • Everett KV, Chioza BA, Georgoula C et al (2009) Infantile hypertrophic pyloric stenosis: evaluation of three positional candidate genes, TRPC1, TRPC5 and TRPC6, by association analysis and re-sequencing. Hum Genet 126:819–831

    PubMed  CAS  Google Scholar 

  • Faber ESL, Sedlak P, Vidovic M et al (2006) Synaptic activation of transient receptor potential channels by metabotropic glutamate receptors in the lateral amygdala. Neuroscience 137:781–794

    PubMed  CAS  Google Scholar 

  • Flemming PK, Dedman AM, Xu SZ et al (2006) Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 281:4977–4982

    PubMed  CAS  Google Scholar 

  • Fowler MA, Sidiropoulou K, Ozkan ED et al (2007) Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain. PLoS ONE 2:e573

    PubMed Central  PubMed  Google Scholar 

  • Freichel M, Suh SH, Pfeifer A et al (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat Cell Biol 3:121–127

    PubMed  CAS  Google Scholar 

  • Gamper N, Shapiro MS (2007) Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 8:921–934

    PubMed  CAS  Google Scholar 

  • Gees M, Colsoul B, Nilius B (2010) The role of Transient Receptor Potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2:a003962

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gilliam JC, Wensel TG (2011) TRP channel gene expression in the mouse retina. Vision Res 51:2440–2452

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277:48303–48310

    PubMed  CAS  Google Scholar 

  • Gomis A, Soriano S, Belmonte C et al (2008) Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J Physiol 586:5633–5649

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gonzalez-Cobos JC, Trebak M (2010) TRPC channels in smooth muscle cells. Front Biosci 15:1023–1039

    CAS  Google Scholar 

  • Greka A, Navarro B, Oancea E et al (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6:837–845

    PubMed  CAS  Google Scholar 

  • Gross SA, Guzman GA, Wissenbach U et al (2009) TRPC5 is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels. J Biol Chem 284:34423–34432

    PubMed Central  PubMed  CAS  Google Scholar 

  • He LP, Hewavitharana T, Soboloff J et al (2005) A functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2. J Biol Chem 280:10997–11006

    PubMed  CAS  Google Scholar 

  • He Z, Jia C, Feng S et al (2012) TRPC5 channel is the mediator of neurotrophin-3 in regulating dendritic growth via CaMKIIα- in rat hippocampal neurons. J Neurosci 32:9383–9395

    PubMed  CAS  Google Scholar 

  • Henley J, Mm P (2004) Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14:320–330

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G et al (2002) Subunit composition of mammalian transient receptor potential channels in living cells. PNAS 99:7461–7466

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hong C, Kim J, Jeon JP et al (2012) Gs cascade regulates canonical transient receptor potential 5 (TRPC5) through cAMP mediated intracellular Ca2+ release and ion channel trafficking. Biochem Biophys Res Commun 421:105–111

    PubMed  CAS  Google Scholar 

  • Huang WC, Young JS, Glitsch MD (2007) Changes in TRPC channel expression during postnatal development of cerebellar neurons. Cell Calcium 42:1–10

    PubMed  CAS  Google Scholar 

  • Hui H, McHugh D, Hannan M et al (2006) Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol 572:165–172

    PubMed Central  PubMed  CAS  Google Scholar 

  • Iketani M, Imaizumi C, Nakamura F et al (2009) Regulation of neurite outgrowth mediated by neuronal calcium sensor-1 and inositol 1,4,5-trisphosphate receptor in nerve growth cones. Neurosci 161:743–752

    CAS  Google Scholar 

  • Inada H, Iida T, Tominaga M (2006) Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem Biophys Res Commun 350:762–767

    PubMed  CAS  Google Scholar 

  • Jeon JP, Hong C, Park EJ et al (2012) Selective Gαi subunits as novel direct activators of Transient Receptor Potential Canonical (TRPC)4 and TRPC5 channels. J Biol Chem 287:17029–17039

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jung S, Muhle A, Schaefer M et al (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278:3562–3571

    PubMed  CAS  Google Scholar 

  • Kaczmarek JS, Riccio A, Clapham DE (2012) Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. PNAS 109:7888–7892

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim MT, Kim BJ, Lee JH et al (2006) Involvement of calmodulin and myosin light chain kinase in activation of mTRPC5 expressed in HEK cells. Am J Physiol 290:C1031–C1040

    CAS  Google Scholar 

  • Kim BJ, Kim MT, Jeon JH et al (2008) Involvement of phosphatidylinositol 4,5-bisphosphate in the desensitization of canonical Transient Receptor Potential 5. Biol Pharm Bull 31:1733–1738

    PubMed  CAS  Google Scholar 

  • Kinoshita-Kawada M, Tang J, Xiao R et al (2005) Inhibition of TRPC5 channels by Ca2+-binding protein 1 in Xenopus oocytes. Pflugers Arch 450:345–354

    PubMed  CAS  Google Scholar 

  • Kraft R (2007) The Na+/Ca2+ exchange inhibitor KB-R7943 potently blocks TRPC channels. Biochem Biophys Res Commun 361:230–236

    PubMed  CAS  Google Scholar 

  • Lee KP, Yuan JP, Hong JH et al (2010) An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett 584:2022–2027

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lepage PK, Lussier MP, Barajas-Martinez H et al (2006) Identification of two domains involved in the assembly of Transient Receptor Potential canonical channels. J Biol Chem 281:30356–30364

    PubMed  CAS  Google Scholar 

  • Liao Y, Erxleben C, Abramowitz J et al (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. PNAS 105:2895–2900

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lussier MP, Lepage PK, Bousquet SM et al (2008) RNF24, a new TRPC interacting protein, causes the intracellular retention of TRPC. Cell Calcium 43:432–443

    PubMed  CAS  Google Scholar 

  • Meissner M, Obmann VG, Hoschke M (2011) Lessons of studying TRP channels with antibodies. In: Zhu MX (ed) TRP channels. CRC Press, Boca Raton, Chapter 6

    Google Scholar 

  • Mery L, Strauss B, Dufour JF et al (2002) The PDZ-interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. J Cell Sci 115:3497–3508

    PubMed  CAS  Google Scholar 

  • Miehe S, Bieberstein A, Arnould I et al (2010) The phospholipid-binding protein SESTD1 is a novel regulator of the Transient Receptor Potential channels TRPC4 and TRPC5. J Biol Chem 285:12426–12434

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miller M, Shi J, Zhu Y et al (2011) Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J Biol Chem 286:33436–33446

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G (2010) Transient receptor potential channelopathies. Pflugers Arch 460:437–450

    PubMed  CAS  Google Scholar 

  • Nilius B, Talavera K, Owsianik G et al (2005) Gating of TRP channels: a voltage connection? J Physiol 567:35–44

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nilius B, Mahieu FF, Prenen J et al (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nilius B, Mahieu F, Karashima Y et al (2007) Regulation of TRP channels: a voltage-lipid connection. Biochem Soc Trans 35:105–108

    PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phosphoinositides. EMBO J 27:2809–2816

    PubMed Central  PubMed  CAS  Google Scholar 

  • Obukhov AG, Nowycky MC (2004) TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin-binding phosphoprotein-50 (EBP50). J Cell Physiol 201:227–235

    PubMed  CAS  Google Scholar 

  • Obukhov AG, Nowycky MC (2005) A cytosolic residue mediates Mg2+ block and regulates inward current amplitude of a Transient Receptor Potential channel. J Neurosci 25:1234–1239

    PubMed  CAS  Google Scholar 

  • Obukhov AG, Nowycky MC (2008) TRPC5 channels undergo changes in gating properties during the activation-deactivation cycle. J Cell Physiol 216:162–171

    PubMed Central  PubMed  CAS  Google Scholar 

  • Okada T, Shimizu S, Wakamori M et al (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273:10279–10287

    PubMed  CAS  Google Scholar 

  • Ordaz B, Tang J, Xiao R et al (2005) Calmodulin and calcium interplay in the modulation of TRPC5 channel activity: identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation. J Biol Chem 280:30788–30796

    PubMed  CAS  Google Scholar 

  • Otsuguro KI, Tang J, Tang Y et al (2008) Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 283:10026–10036

    PubMed Central  PubMed  CAS  Google Scholar 

  • Owsianik G, Talavera K, Voets T et al (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    PubMed  CAS  Google Scholar 

  • Phelan KD, Shwe UT, Abramowitz J et al (2013) Canonical Transient Receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Mol Pharmacol 83:429–438

    PubMed Central  PubMed  CAS  Google Scholar 

  • Philipp S, Cavalie A, Freichel M et al (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J 15:6166–6171

    PubMed Central  PubMed  CAS  Google Scholar 

  • Philipp S, Hambrecht J, Braslavski L et al (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17:4274–4282

    PubMed Central  PubMed  CAS  Google Scholar 

  • Plazas PV, Nicol X, Spitzer NC (2013) Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3. PNAS 110:1524–1529

    PubMed Central  PubMed  CAS  Google Scholar 

  • Puram SV, Riccio A, Koirala S et al (2011) A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain. Genes Dev 25:2659–2673

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    PubMed  CAS  Google Scholar 

  • Riccio A, Medhurst AD, Mattei C et al (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Mol Brain Res 109:95–104

    PubMed  CAS  Google Scholar 

  • Riccio A, Li Y, Moon J et al (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137:761–772

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rohacs T, Nilius B (2007) Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 455:157–168

    PubMed  CAS  Google Scholar 

  • Rohacs T, Lopes CM, Michailidis I et al (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634

    PubMed  CAS  Google Scholar 

  • Saleh SN, Albert AP, Peppiatt-Wildman CM et al (2008) Diverse properties of store-operated TRPC channels activated by protein kinase C in vascular myocytes. J Physiol 586:2463–2476

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schaefer M, Plant TD, Obukhov AG et al (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275:17517–17526

    PubMed  CAS  Google Scholar 

  • Schaefer M, Plant TD, Stresow N et al (2002) Functional differences between TRPC4 splice variants. J Biol Chem 277:3752–3759

    PubMed  CAS  Google Scholar 

  • Schindl R, Frischauf I, Kahr H et al (2008) The first ankyrin-like repeat is the minimum indispensable key structure for functional assembly of homo- and heteromeric TRPC4/TRPC5 channels. Cell Calcium 43:260–269

    PubMed  CAS  Google Scholar 

  • Semtner M, Schaefer M, Pinkenburg O et al (2007) Potentiation of TRPC5 by Protons. J Biol Chem 282:33868–33878

    PubMed  CAS  Google Scholar 

  • Shi J, Ju M, Abramowitz J et al (2012) TRPC1 proteins confer PKC and phosphoinositol activation on native heteromeric TRPC1/C5 channels in vascular smooth muscle: comparative study of wild-type and TRPC1−/− mice. FASEB J 26:409–419

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shimizu S, Yoshida T, Wakamori M et al (2006) Ca2+-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells. J Physiol 570:219–235

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sossey-Alaoui K, Lyon JA, Jones L et al (1999) Molecular cloning and characterization of TRPC5 (HTRP5), the human homologue of a mouse brain receptor-activated capacitative Ca2+ entry channel. Genomics 60:330–340

    PubMed  CAS  Google Scholar 

  • Srikanth S, Jew M, Kim KD et al (2012) Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1). PNAS 109:8682–8687

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stamboulian S, Moutin MJ, Treves S et al (2005) Junctate, an inositol 1,4,5-triphosphate receptor associated protein, is present in rodent sperm and binds TRPC2 and TRPC5 but not TRPC1 channels. Dev Biol 286:326–337

    PubMed  CAS  Google Scholar 

  • Storch U, Forst AL, Philipp M et al (2012) Transient Receptor Potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J Biol Chem 287:3530–3540

    PubMed Central  PubMed  CAS  Google Scholar 

  • Strubing C, Krapivinsky G, Krapivinsky L et al (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    PubMed  CAS  Google Scholar 

  • Strubing C, Krapivinsky G, Krapivinsky L et al (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    PubMed  Google Scholar 

  • Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–95

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sukumar P, Beech DJ (2010) Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions Pb2+. Biochem Biophys Res Commun 393:50–54

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sung TS, Jeon JP, Kim BJ et al (2011) Molecular determinants of PKA-dependent inhibition of TRPC5 channel. Am J Physiol 301:C823–C832

    CAS  Google Scholar 

  • Tai C, Hines DJ, Choi HB et al (2011) Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. Hippocampus 21:958–967

    PubMed  CAS  Google Scholar 

  • Tang Y, Tang J, Chen Z et al (2000) Association of mammalian Trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem 275:37559–37564

    PubMed  CAS  Google Scholar 

  • Tang J, Lin Y, Zhang Z et al (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of Trp channels. J Biol Chem 276:21303–21310

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tian D, Jacobo SMP, Billing D et al (2010) Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci STKE 3:ra77

    Google Scholar 

  • Tiruppathi C, Freichel M, Vogel SM et al (2002) Impairment of store-operated Ca2+ entry in TRPC4−/− mice interferes with increase in lung microvascular permeability. Circ Res 91:70–76

    PubMed  CAS  Google Scholar 

  • Trebak M, Lemonnier L, Dehaven WI et al (2009) Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 457:757–769

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tsvilovskyy VV, Zholos AV, Aberle T et al (2009) Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137:1415–1424

    PubMed Central  PubMed  Google Scholar 

  • Vazquez G, Wedel BJ, Aziz O et al (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742:21–36

    PubMed  CAS  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    PubMed  CAS  Google Scholar 

  • von Bohlen und Halbach O, Hinz U, Unsicker K et al (2005) Distribution of TRPC1 and TRPC5 in medial temporal lobe structures of mice. Cell Tissue Res 322:201–206

    PubMed  Google Scholar 

  • Watanabe H, Murakami M, Ohba T et al (2008) TRP channel and cardiovascular disease. Pharmacol Ther 118:337–351

    PubMed  CAS  Google Scholar 

  • Wu LJ, Sweet TB, Clapham DE (2010) International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62:381–404

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu SZ, Zeng F, Boulay G et al (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145:405–414

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu SZ, Boulay G, Flemming R et al (2006a) E3-targeted anti-TRPC5 antibody inhibits store-operated calcium entry in freshly isolated pial arterioles. Am J Physiol 291:H2653–H2659

    CAS  Google Scholar 

  • Xu SZ, Muraki K, Zeng F et al (2006b) A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. Circ Res 98:1381–1389

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu SZ, Sukumar P, Zeng F et al (2008) TRPC channel activation by extracellular thioredoxin. Nature 451:69–72

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xue T, Do MT, Riccio A et al (2011) Melanopsin signalling in mammalian iris and retina. Nature 479:67–73

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yamada H, Wakamori M, Hara Y et al (2000) Spontaneous single-channel activity of neuronal TRP5 channel recombinantly expressed in HEK293 cells. Neurosci Lett 285:111–114

    PubMed  CAS  Google Scholar 

  • Yan HD, Villalobos C, Andrade R (2009) TRPC channels mediate a muscarinic receptor-induced afterdepolarization in cerebral cortex. J Neurosci 29:10038–10046

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97:853–863

    PubMed  CAS  Google Scholar 

  • Yip H, Chan WY, Leung PC et al (2004) Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol 122:553–561

    PubMed  CAS  Google Scholar 

  • Yoshida T, Inoue R, Morii T et al (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    PubMed  CAS  Google Scholar 

  • Yuan JP, Zeng W, Huang GN et al (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636–645

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zamburlin P, Ruffinatti FA, Gilardino A et al (2013) Calcium signals and FGF-2 induced neurite growth in cultured parasympathetic neurons: spatial localization and mechanisms of activation. Pflugers Arch. doi:10.1007/s00424-013-1257-5

    PubMed  Google Scholar 

  • Zeng F, Xu SZ, Jackson PK et al (2004) Human TRPC5 channel activated by a multiplicity of signals in a single cell. J Physiol 559:739–750

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zholos AV (2011) Studying endogenous TRP channels in visceral and vascular smooth muscles. In: Zhu MX (ed) TRP channels. CRC Press, Boca Raton, Chapter 9

    Google Scholar 

  • Zholos AV, Curtis TM (2013) TRP channels in vascular disorders. Curr Top Med Chem 13:295–309

    PubMed  CAS  Google Scholar 

  • Zholos AV, Zholos AA, Bolton TB (2004) G-protein-gated TRP-like cationic channel activated by muscarinic receptors: effect of potential on single-channel gating. J Gen Physiol 123:581–598

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu MX (2005) Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflugers Arch 451:105–115

    PubMed  CAS  Google Scholar 

  • Zhu MX, Tang J (2008) TRPC channel interactions with calmodulin and IP3 receptors. In: Chadwick DJ, Goode J (eds) Mammalian TRP channels as molecular targets: Novartis Foundation Symposium, vol 258. Wiley, Chichester, UK, pp 44–62

    Google Scholar 

  • Zhu MH, Chae M, Kim HJ et al (2005) Desensitization of canonical transient receptor potential channel 5 by protein kinase C. Am J Physiol 289:C591–C600

    CAS  Google Scholar 

  • Zimmermann K, Lennerz JK, Hein A et al (2011) Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. PNAS 108:18114–18119

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratory is currently supported by grants from the National Institutes of Health (USA) (R01 DK081654) and Biotechnology and Biological Sciences Research Council (UK) (BB/I026359/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Zholos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zholos, A.V. (2014). TRPC5. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54215-2_6

Download citation

Publish with us

Policies and ethics