Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 222))

Abstract

TRPML3 belongs to the MCOLN (TRPML) subfamily of transient receptor potential (TRP) channels comprising three genes in mammals. Since the discovery of the pain sensing, capsaicin- and heat-activated vanilloid receptor (TRPV1), TRP channels have been found to be involved in regulating almost all kinds of our sensory modalities. Thus, TRP channel members are sensitive to heat or cold; they are involved in pain or osmosensation, vision, hearing, or taste sensation. Loss or mutation of TRPML1 can cause retina degeneration and eventually blindness in mice and men (mucolipidosis type IV). Gain-of-function mutations in TRPML3 cause deafness and circling behavior in mice. A special feature of TRPML channels is their intracellular expression. They mostly reside in membranes of organelles of the endolysosomal system such as early and late endosomes, recycling endosomes, lysosomes, or lysosome-related organelles. Although the physiological roles of TRPML channels within the endolysosomal system are far from being fully understood, it is speculated that they are involved in the regulation of endolysosomal pH, fusion/fission processes, trafficking, autophagy, and/or (hormone) secretion and exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LRO:

lysosome-related organelle

LSD:

lysosomal storage disease

ML IV:

mucolipidosis type IV

TRP:

transient receptor potential

References

  • Behnke J, Eskelinen EL, Saftig P, Schröder B (2011) Two dileucine motifs mediate late endosomal/lysosomal targeting of transmembrane protein 192 (TMEM192) and a C-terminal cysteine residue is responsible for disulfide bond formation in TMEM192 homodimers. Biochem J 434:219–231

    Article  CAS  PubMed  Google Scholar 

  • Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni AJ, Remis NN, Flores EN, García-Añoveros J (2011) Expression and vesicular localization of mouse Trpml3 in stria vascularis, hair cells, and vomeronasal and olfactory receptor neurons. J Comp Neurol 519:1095–1114

    Article  CAS  PubMed  Google Scholar 

  • Cuajungco MP, Samie MA (2008) The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch 457:463–473

    Article  CAS  PubMed  Google Scholar 

  • Curcio-Morelli C, Zhang P, Venugopal B, Charles FA, Browning MF, Cantiello HF, Slaugenhaupt SA (2010) Functional multimerization of mucolipin channel proteins. J Cell Physiol 222:328–335

    Article  CAS  PubMed  Google Scholar 

  • deGroot T, Bindels RJ, Hoenderop JG (2008) TRPV5: an ingeniously controlled calcium channel. Kidney Int 74:1241–1246

    Article  CAS  Google Scholar 

  • Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci USA 99:14994–14999

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Doray B, Misra S, Qian Y, Brett TJ, Kornfeld S (2012) Do GGA adaptors bind internal DXXLL motifs? Traffic 13:1315–1325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2:a003962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jörs S, Kros CJ, Ricci AJ, Heller S (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci USA 104:19583–19588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimm C, Jörs S, Heller S (2009) Life and death of sensory hair cells expressing constitutively active TRPML3. J Biol Chem 284:13823–13831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimm C, Jörs S, Saldanha SA, Obukhov AG, Pan B, Oshima K, Cuajungco MP, Chase P, Hodder P, Heller S (2010) Small molecule activators of TRPML3. Chem Biol 17:135–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimm C, Hassan S, Wahl-Schott C, Biel M (2012a) Role of TRPML and two-pore channels in endolysosomal cation homeostasis. J Pharmacol Exp Ther 342:236–244

    Article  CAS  PubMed  Google Scholar 

  • Grimm C, Jörs S, Guo Z, Obukhov AG, Heller S (2012b) Constitutive activity of TRPML2 and TRPML3 channels versus activation by low extracellular sodium and small molecules. J Biol Chem 287:22701–22708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Grimm C, Becker L, Ricci AJ, Heller S (2013) A novel ion channel formed by interaction of TRPML3 with TRPV5. PLoS One 8:e58174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho CY, Alghamdi TA, Botelho RJ (2012) Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP2. Traffic 13(1):1–8. doi:10.1111/j.1600-0854.2011.01246.x

    Article  CAS  PubMed  Google Scholar 

  • Jörs S, Grimm C, Becker L, Heller S (2010) Genetic inactivation of Trpml3 does not lead to hearing and vestibular impairment in mice. PLoS One 5:e14317

    Article  PubMed Central  PubMed  Google Scholar 

  • Karacsonyi C, Miguel AS, Puertollano R (2007) Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic 8(10):1404–1414

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Muallem S (2007) Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype. J Biol Chem 282:36138–36142

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Soyombo AA, Muallem S (2008) A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J 27:1197–1205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HJ, Soyombo AA, Tjon-Kon-Sang S, So I, Muallem S (2009) The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic 10:1157–1167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HJ, Yamaguchi S, Li Q, So I, Muallem S (2010) Properties of the TRPML3 channel pore and its stable expansion by the Varitint-Waddler-causing mutation. J Biol Chem 285:16513–16520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobori T, Smith GD, Sandford R, Edwardson JM (2009) The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement. J Biol Chem 284:35507–35513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447

    Article  PubMed Central  PubMed  Google Scholar 

  • Larisch N, Schulze C, Galione A, Dietrich P (2012) An N-terminal dileucine motif directs two-pore channels to the tonoplast of plant cells. Traffic 13:1012–1022

    Article  CAS  PubMed  Google Scholar 

  • Lee KP, Nair AV, Grimm C, van Zeeland F, Heller S, Bindels RJ, Hoenderop JG (2010) A helix-breaking mutation in the epithelial Ca(2+) channel TRPV5 leads to reduced Ca(2+)-dependent inactivation. Cell Calcium 48:275–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lelouvier B, Puertollano R (2011) Mucolipin-3 regulates luminal calcium, acidification, and membrane fusion in the endosomal pathway. J Biol Chem 286:9826–9832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Article  CAS  Google Scholar 

  • Martina JA, Lelouvier B, Puertollano R (2009) The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 10:1143–1156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moriguchi I, Hirono S, Liu Q, Nakagome I, Matsushita Y (1992) Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull 40:127–130

    Article  CAS  Google Scholar 

  • Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, Garcia-Anoveros J (2008) The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci USA 105:353–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noben-Trauth K (2011) The TRPML3 channel: from gene to function. Adv Exp Med Biol 704:229–237. doi:10.1007/978-94-007-0265-3_13. Review

    Google Scholar 

  • Saldanha SA, Grimm C, Mercer BA, Choi JY, Allais C, Roush WR, Heller S, Hodder P (2011) Campaign to identify agonists of transient receptor potential channels 3 and 2 (TRPML3 & TRPML2), Probe reports from the NIH molecular libraries program. National Center for Biotechnology Information, Bethesda, MD

    Google Scholar 

  • Schieder M, Rötzer K, Brüggemann A, Biel M, Wahl-Schott CA (2010a) Characterization of two-pore channel 2 (TPCN2)-mediated Ca2+ currents in isolated lysosomes. J Biol Chem 285:21219–21222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schieder M, Rötzer K, Bruggemann A, Biel M, Wahl-Schott C (2010b) Planar patch clamp approach to characterize ionic currents from intact lysosomes. Sci Signal 3:pl3

    Article  CAS  PubMed  Google Scholar 

  • Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong XP, Yu T, Lieberman AP, Showalter HD, Xu H (2012) Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 3:731

    Article  PubMed Central  PubMed  Google Scholar 

  • Staaf S, Oerther S, Lucas G, Mattsson JP, Ernfors P (2009) Differential regulation of TRP channels in a rat model of neuropathic pain. Pain 144:187–199

    Article  CAS  PubMed  Google Scholar 

  • Stewart AP, Smith GD, Sandford RN, Edwardson JM (2010) Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99:790–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takumida M, Anniko M (2010) Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear. Acta Otolaryngol 130(2):196–203. doi:10.3109/00016480903013593

    Article  CAS  PubMed  Google Scholar 

  • Touchberry CD, Bales IK, Stone JK, Rohrberg TJ, Parelkar NK, Nguyen T, Fuentes O, Liu X, Qu CK, Andresen JJ, Valdivia HH, Brotto M, Wacker MJ (2010) Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) potentiates cardiac contractility via activation of the ryanodine receptor. J Biol Chem 285:40312–40321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsiokas L, Arnould T, Zhu C, Kim E, Walz G et al (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Aken AF, Atiba-Davies M, Marcotti W, Goodyear RJ, Bryant JE, Richardson GP, Noben-Trauth K, Kros CJ (2008) TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J Physiol 586(Pt 22):5403–5418. doi:10.1113/jphysiol.2008.156992

    Article  PubMed Central  PubMed  Google Scholar 

  • van de Graaf SF, Rescher U, Hoenderop JG, Verkaart S, Bindels RJ, Gerke V (2008) TRPV5 is internalized via clathrin-dependent endocytosis to enter a Ca2+-controlled recycling pathway. J Biol Chem 283:4077–4086

    Article  PubMed  Google Scholar 

  • Venkatachalam K, Hofmann T, Montell C (2006) Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J Biol Chem 281:17517–17527

    Article  CAS  PubMed  Google Scholar 

  • Vergarajauregui S, Puertollano R (2006) Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7:337–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172

    Article  CAS  Google Scholar 

  • Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H (2012) TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 151(2):372–383. doi:10.1016/j.cell.2012.08.036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu H, Delling M, Li L, Dong X, Clapham DE (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc Natl Acad Sci USA 104:18321–18326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi S, Muallem S (2010) Opening the TRPML gates. Chem Biol 17:209–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeevi DA, Frumkin A, Offen-Glasner V, Kogot-Levin A, Bach G (2009) A potentially dynamic lysosomal role for the endogenous TRPML proteins. J Pathol 219:153–162

    Article  CAS  PubMed  Google Scholar 

  • Zeevi DA, Lev S, Frumkin A, Minke B, Bach G (2010) Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy. J Cell Sci 123:3112–3124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Li X, Xu H (2012) Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc Natl Acad Sci USA 109(28):11384–11389. doi:10.1073/pnas.1202194109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zolov SN, Bridges D, Zhang Y, Lee WW, Riehle E, Verma R, Lenk GM, Converso-Baran K, Weide T, Albin RL, Saltiel AR, Meisler MH, Russell MW, Weisman LS (2012) In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P. Proc Natl Acad Sci USA 109(43):17472–17477. doi:10.1073/pnas.1203106109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. Stefan Heller (Stanford, USA) and Prof. Dr. Martin Biel (LMU Munich, Germany) for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grimm, C., Barthmes, M., Wahl-Schott, C. (2014). TRPML3. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54215-2_26

Download citation

Publish with us

Policies and ethics