Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 222))

Abstract

The transient receptor potential (TRP) channels play a wide variety of essential roles in the sensory systems of various species, both invertebrates and vertebrates. The TRP channel was first identified as a molecule required for proper light response in Drosophila melanogaster. We and another group recently revealed that TRPM1, the founding member of the melanoma-related transient receptor potential (TRPM) subfamily, is required for the photoresponse in mouse retinal ON-bipolar cells. We further demonstrated that Trpm1 is a component of the transduction cation channel negatively regulated by the metabotropic glutamate receptor 6 (mGulR6) cascade in ON-bipolar cells through a reconstitution experiment using CHO cells expressing Trpm1, mGluR6, and Goα. Furthermore, human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function and suffer from night blindness starting in early childhood. In addition to the function of transduction cation channel, TRPM1 is one of the retinal autoantigens in some paraneoplastic retinopathy (PR) associated with retinal ON-bipolar cell dysfunction. In this chapter, we describe physiological functions of the TRPM1 channel and its underlying biochemical mechanisms in retinal ON-bipolar cells in association with CSNB and PR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamus G (2009) Autoantibody targets and their cancer relationship in the pathogenicity of paraneoplastic retinopathy. Autoimmun Rev 8:410–414

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arshavsky VY, Lamb TD, Pugh EN (2002) G proteins and phototransduction. Annu Rev Physiol 64:153–187

    Article  PubMed  CAS  Google Scholar 

  • Audo I, Robson AG, Holder GE, Moore AT (2008) The negative ERG: clinical phenotypes and disease mechanisms of inner retinal dysfunction. Surv Ophthalmol 53:16–40

    Article  PubMed  Google Scholar 

  • Audo I, Kohl S, Leroy BP, Munier FL, Guillonneau X, Mohand-Saïd S, Bujakowska K, Nandrot EF, Lorenz B, PreisingM KU, Renner AB, Bernd A, Antonio A, Moskova-Doumanova-V LME, Poloschek CM, Drumare I, Defoort-Dhellemmes S (2009) TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 85:720–729

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Audo I, Bujakowska K, Orhan E, Poloschek CM, Defoort-Dhellemmes S, Drumare I, Kohl S, Luu TD, Lecompte O, Zrenner E, Lancelot ME, Antonio A, Germain A, Michiels C, Audier C, Letexier M, Saraiva JP, Leroy BP, Munier FL, Mohand-Saïd S (2012) Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90:321–330

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA, Mets M, Musarella MA, Boycott KM (1998) Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19:264–267

    Article  PubMed  CAS  Google Scholar 

  • Bellone RR, Brooks SA, Sandmeyer L, Murphy BA, Forsyth G, Archer S, Bailey E, Grahn B (2008) Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus). Genetics 179:1861–1870

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boyle GM, Woods SL, Bonazzi VF, Stark MS, Hacker E, Aoude LG, Dutton-Regester K, Cook AL, Sturm RA, Hayward NK (2011) Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res 24:525–537

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Posokhova E, Martemyanov KA (2011) TRPM1 forms complexes with nyctalopin in vivo and accumulates in postsynaptic compartment of ON-bipolar neurons in mGluR6-dependent manner. J Neurosci 31:11521–11526

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chan JW (2003) Paraneoplastic retinopathies and optic neuropathies. Surv Ophthalmol 48:12–38

    Article  PubMed  Google Scholar 

  • de la Villa P, Kurahashi T, Kaneko A (1995) L-glutamate-induced responses and cGMP-activated channels in three subtypes of retinal bipolar cells dissociated from the cat. J Neurosci 15:3571–3582

    PubMed  Google Scholar 

  • Devi S, Kedlaya R, Maddodi N, Bhat KM, Weber CS, Valdivia H, Setaluri V (2009) Calcium homeostasis in human melanocytes: role of transient receptor potential melastatin 1 (TRPM1) and its regulation by ultraviolet light. Am J Physiol Cell Physiol 297:C679–C687

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Devi S, Markandeya Y, Maddodi N, Dhingra A, Vardi N, Balijepalli RC, Setaluri V (2013) Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes. Pigment Cell Melanoma Res 26(3):348–356

    Article  PubMed  CAS  Google Scholar 

  • DeVries SH, Baylor DA (1993) Synaptic circuitry of the retina and olfactory bulb. Cell 72(Suppl):139–149

    Article  PubMed  Google Scholar 

  • Dhingra A, Lyubarsky A, Jiang M, Pugh EN, Birnbaumer L, Sterling P, Vardi N (2000) The light response of ON bipolar neurons requires G[alpha]o. J Neurosci 20:9053–9058

    PubMed  CAS  Google Scholar 

  • Dhingra A, Jiang M, Wang TL, Lyubarsky A, Savchenko A, Bar-Yehuda T, Sterling P, Birnbaumer L, Vardi N (2002) Light response of retinal ON bipolar cells requires a specific splice variant of Galpha(o). J Neurosci 22:4878–4884

    PubMed  CAS  Google Scholar 

  • Dhingra A, Faurobert E, Dascal N, Sterling P, Vardi N (2004) A retinal-specific regulator of G-protein signaling interacts with Galpha(o) and accelerates an expressed metabotropic glutamate receptor 6 cascade. J Neurosci 24:5684–5693

    Article  PubMed  CAS  Google Scholar 

  • Dhingra A, Fina ME, Neinstein A, Ramsey DJ, Xu Y, Fishman GA, Alexander KR, Qian H, Peachey NS, Gregg RG, Vardi N (2011) Autoantibodies in Melanoma-Associated Retinopathy Target TRPM1 Cation Channels of Retinal ON Bipolar Cells. J Neurosci 31:3962–3967

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dhingra A, Ramakrishnan H, Neinstein A, Fina ME, Xu Y, Li J, Chung DC, Lyubarsky A, Vardi N (2012) Gβ3 is required for normal light ON responses and synaptic maintenance. J Neurosci 32:11343–11355

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dowling JE (1978) How the retina "sees". Invest Ophthalmol Vis Sci 17:832–834

    PubMed  CAS  Google Scholar 

  • Dryja TP, McGee TL, Berson EL, Fishman GA, Sandberg MA, Alexander KR, Derlacki DJ, Rajagopalan AS (2005) Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA 102:4884–4889

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58:1515–1520

    PubMed  CAS  Google Scholar 

  • Erler I, Al-Ansary DM, Wissenbach U, Wagner TF, Flockerzi V, Niemeyer BA (2006) Trafficking and assembly of the cold-sensitive TRPM8 channel. J Biol Chem 281:38396–38404

    Article  PubMed  CAS  Google Scholar 

  • Euler T, Schneider H, Wässle H (1996) Glutamate responses of bipolar cells in a slice preparation of the rat retina. J Neurosci 16:2934–2944

    PubMed  CAS  Google Scholar 

  • Fang D, Setaluri V (2000) Expression and Up-regulation of alternatively spliced transcripts of melastatin, a melanoma metastasis-related gene, in human melanoma cells. Biochem Biophys Res Commun 279:53–61

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, Minor DL (2008) X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol 383:854–870

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gregg RG, Kamermans M, Klooster J, Lukasiewicz PD, Peachey NS, Vessey KA, McCall MA (2007) Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness. J Neurophysiol 98:3023–3033

    Article  PubMed Central  PubMed  Google Scholar 

  • Haverkamp S, Grünert U, Wässle H (2001) The synaptic architecture of AMPA receptors at the cone pedicle of the primate retina. J Neurosci 21:2488–2500

    PubMed  CAS  Google Scholar 

  • Heckenlively JR, Ferreyra HA (2008) Autoimmune retinopathy: a review and summary. Semin Immunopathol 30:127–134

    Article  PubMed  Google Scholar 

  • Hunter JJ, Shao J, Smutko JS, Dussault BJ, Nagle DL, Woolf EA, Holmgren LM, Moore KJ, Shyjan AW (1998) Chromosomal localization and genomic characterization of the mouse melastatin gene (Mlsn1). Genomics 54:116–123

    Article  PubMed  CAS  Google Scholar 

  • Iwakabe H, Katsuura G, Ishibashi C, Nakanishi S (1997) Impairment of pupillary responses and optokinetic nystagmus in the mGluR6-deficient mouse. Neuropharmacology 36:135–143

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Ross SE, Trimarchi JM, Aach J, Greenberg ME, Cepko CL (2008) Identification of molecular markers of bipolar cells in the murine retina. J Comp Neurol 507:1795–1810

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koike C, Sanuki R, Miyata K, Koyasu T, Miyoshi T, Sawai H, Kondo M, Usukura J, Furukawa T (2007) The functional analysis of TRPM1 in retinal bipolar cells. Neurosci Res 58:S41

    Article  Google Scholar 

  • Koike C, Numata T, Ueda H, Mori Y, Furukawa T (2010a) TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Cell Calcium 48:95–101

    Article  PubMed  CAS  Google Scholar 

  • Koike C, Obara T, Uriu Y, Numata T, Sanuki R, Miyata K, Koyasu T, Ueno S, Funabiki K, Tani A, Ueda H, Kondo M, Mori Y, Tachibana M, Furukawa T (2010b) TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci USA 107:332–337

    Article  PubMed Central  PubMed  Google Scholar 

  • Kondo M, Sanuki R, Ueno S, Nishizawa Y, Hashimoto N, Ohguro H, Yamamoto S, Machida S, Terasaki H, Adamus G, Furukawa T (2011) Identification of autoantibodies against TRPM1 in patients with paraneoplastic retinopathy associated with ON bipolar cell dysfunction. PLoS One 6:e19911

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lambert S, Drews A, Rizun O, Wagner TF, Lis A, Mannebach S, Plant S, Portz M, Meissner M, Philipp SE, Oberwinkler J (2011) Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J Biol Chem 286:12221–12233

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lepichon JB, Bittel DC, Graf WD, Yu S (2010) A 15q13.3 homozygous microdeletion associated with a severe neurodevelopmental disorder suggests putative functions of the TRPM1, CHRNA7, and other homozygously deleted genes. Am J Med Genet A 152A:1300–1304

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Sergouniotis PI, Michaelides M, Mackay DS, Wright GA, Devery S, Moore AT, Holder GE, Robson AG, Webster AR (2009) Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am J Hum Genet 85:711–719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Masu M, Iwakabe H, Tagawa Y, Miyoshi T, Yamashita M, Fukuda Y, Sasaki H, Hiroi K, Nakamura Y, Shigemoto R (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80:757–765

    Article  PubMed  CAS  Google Scholar 

  • McGillem GS, Dacheux RF (2001) Rabbit cone bipolar cells: correlation of their morphologies with whole-cell recordings. Vis Neurosci 18:675–685

    Article  PubMed  CAS  Google Scholar 

  • Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T (1986) Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol 104:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Morgans CW, Ren G, Akileswaran L (2006) Localization of nyctalopin in the mammalian retina. Eur J Neurosci 23:1163–1171

    Article  PubMed  Google Scholar 

  • Morgans CW, Brown RL, Duvoisin RM (2010) TRPM1: the endpoint of the mGluR6 signal transduction cascade in retinal ON-bipolar cells. Bioessays 32:609–614

    Article  PubMed  CAS  Google Scholar 

  • Morigiwa K, Vardi N (1999) Differential expression of ionotropic glutamate receptor subunits in the outer retina. J Comp Neurol 405:173–184

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Sanuki R, Yasuma TR, Onishi A, Nishiguchi KM, Koike C, Kadowaki M, Kondo M, Miyake Y, Furukawa T (2010) TRPM1 mutations are associated with the complete form of congenital stationary night blindness. Mol Vis 16:425–437

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M (1998) Glutamate receptors: brain function and signal transduction. Brain Res Brain Res Rev 26:230–235

    Article  PubMed  Google Scholar 

  • Nawy S (1999) The metabotropic receptor mGluR6 may signal through G(o), but not phosphodiesterase, in retinal bipolar cells. J Neurosci 19:2938–2944

    PubMed  CAS  Google Scholar 

  • Nawy S, Jahr CE (1990) Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346:269–271

    Article  PubMed  CAS  Google Scholar 

  • Nomura A, Shigemoto R, Nakamura Y, Okamoto N, Mizuno N, Nakanishi S (1994) Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell 77:361–369

    Article  PubMed  CAS  Google Scholar 

  • Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE (2009) TRPM1 forms ion channels associated with melanin content in melanocytes. Science signaling 2:ra21

    PubMed  Google Scholar 

  • Peachey NS, Pearring JN, Bojang P, Hirschtritt ME, Sturgill-Short G, Ray TA, Furukawa T, Koike C, Goldberg AF, Shen Y, McCall MA, Nawy S, Nishina PM, Gregg RG (2012a) Depolarizing bipolar cell dysfunction due to a Trpm1 point mutation. J Neurophysiol 108(9):2442–2451

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Peachey NS, Ray TA, Florijn R, Rowe LB, Sjoerdsma T, Contreras-Alcantara S, Baba K, Tosini G, Pozdeyev N, Iuvone PM, Bojang P, Pearring JN, Simonsz HJ, van Genderen M, Birch DG, Traboulsi EI, Dorfman A, Lopez I, Ren H, Goldberg AF, Nishina PM (2012b) GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90:331–339

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Perraud AL, Schmitz C, Scharenberg AM (2003) TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium 33:519–531

    Article  PubMed  CAS  Google Scholar 

  • Pusch CM, Zeitz C, Brandau O, Pesch K, Achatz H, Feil S, Scharfe C, Maurer J, Jacobi FK, Pinckers A, Andreasson S, Hardcastle A, Wissinger B, Berger W, Meindl A (2000) The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat Genet 26:324–327

    Article  PubMed  CAS  Google Scholar 

  • Rampino MA, Nawy SA (2011) Relief of Mg2+-dependent inhibition of TRPM1 by PKCα at the rod bipolar cell synapse. J Neurosci 31:13596–13603

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Redenti S, Chappell RL (2005) Neuroimaging of zinc released by depolarization of rat retinal cells. Vision Res 45:3520–3525

    Article  PubMed  CAS  Google Scholar 

  • Redenti S, Ripps H, Chappell RL (2007) Zinc release at the synaptic terminals of rod photoreceptors. Exp Eye Res 85:580–584

    Article  PubMed  CAS  Google Scholar 

  • Rohrer B, Blanco R, Marc RE, Lloyd MB, Bok D, Schneeweis DM, Reichardt LF (2004) Functionally intact glutamate-mediated signaling in bipolar cells of the TRKB knockout mouse retina. Vis Neurosci 21:703–713

    Article  PubMed Central  PubMed  Google Scholar 

  • Shen Y, Heimel JA, Kamermans M, Peachey NS, Gregg RG, Nawy S (2009) A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J Neurosci 29:6088–6093

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shiells RA, Falk G (1990) Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proc Biol Sci 242:91–94

    Article  PubMed  CAS  Google Scholar 

  • Shiells R, Falk G (1992a) Retinal on-bipolar cells contain a nitric oxide-sensitive guanylate cyclase. Neuroreport 3:845–848

    Article  PubMed  CAS  Google Scholar 

  • Shiells RA, Falk G (1992b) The glutamate-receptor linked cGMP cascade of retinal on-bipolar cells is pertussis and cholera toxin-sensitive. Proc Biol Sci 247:17–20

    Article  PubMed  CAS  Google Scholar 

  • Shiells RA, Falk G (1992c) Properties of the cGMP-activated channel of retinal on-bipolar cells. Proc Biol Sci 247:21–25

    Article  PubMed  CAS  Google Scholar 

  • Shiells RA, Falk G, Naghshineh S (1981) Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature 294:592–594

    Article  PubMed  CAS  Google Scholar 

  • Slaughter MM, Miller RF (1981) 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211:182–185

    Article  PubMed  CAS  Google Scholar 

  • Slaughter MM, Miller RF (1985) Characterization of an extended glutamate receptor of the on bipolar neuron in the vertebrate retina. J Neurosci 5:224–233

    PubMed  CAS  Google Scholar 

  • Strom TM, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Lorenz B, Weber BH, Wutz K, Gutwillinger N, Rüther K, Drescher B, Sauer C, Zrenner E, Meitinger T, Rosenthal A, Meindl A (1998) An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 19:260–263

    Article  PubMed  CAS  Google Scholar 

  • Thirkill CE, FitzGerald P, Sergott RC, Roth AM, Tyler NK, Keltner JL (1989) Cancer-associated retinopathy (CAR syndrome) with antibodies reacting with retinal, optic-nerve, and cancer cells. N Engl J Med 321:1589–1594

    Article  PubMed  CAS  Google Scholar 

  • Tsuruda PR, Julius D, Minor DL (2006) Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51:201–212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Genderen MM, Bijveld MM, Claassen YB, Florijn RJ, Pearring JN, Meire FM, McCall MA, Riemslag FC, Gregg RG, Bergen AA, Kamermans M (2009) Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 85:730–736

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vardi N (1998) Alpha subunit of Go localizes in the dendritic tips of ON bipolar cells. J Comp Neurol 395:43–52

    Article  PubMed  CAS  Google Scholar 

  • Vardi N, Morigiwa K (1997) ON cone bipolar cells in rat express the metabotropic receptor mGluR6. Vis Neurosci 14:789–794

    Article  PubMed  CAS  Google Scholar 

  • Vardi N, Duvoisin R, Wu G, Sterling P (2000) Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. J Comp Neurol 423:402–412

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Abu-Asab MS, Li W, Aronow ME, Singh AD, Chan CC (2012) Autoantibody against transient receptor potential M1 cation channels of retinal ON bipolar cells in paraneoplastic vitelliform retinopathy. BMC Ophthalmol 12:56

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weng K, Lu C, Daggett LP, Kuhn R, Flor PJ, Johnson EC, Robinson PR (1997) Functional coupling of a human retinal metabotropic glutamate receptor (hmGluR6) to bovine rod transducin and rat Go in an in vitro reconstitution system. J Biol Chem 272:33100–33104

    Article  PubMed  CAS  Google Scholar 

  • Won J, Shi LY, Hicks W, Wang J, Hurd R, Naggert JK, Chang B, Nishina PM (2011) Mouse model resources for vision research. J Ophthalmol 2011:391384

    PubMed Central  PubMed  Google Scholar 

  • Xiong WH, Duvoisin RM, Adamus G, Jeffrey BG, Gellman C, Morgans CW (2013) Serum TRPM1 autoantibodies from melanoma associated retinopathy patients enter retinal ON-bipolar cells and attenuate the electroretinogram in mice. PLoS One 8:e69506

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu XZ, Moebius F, Gill DL, Montell C (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci USA 98:10692–10697

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zeitz C, van Genderen M, Neidhardt J, Luhmann UF, Hoeben F, Forster U, Wycisk K, Mátyás G, Hoyng CB, Riemslag F, Meire F, Cremers FP, Berger W (2005) Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci 46:4328–4335

    Article  PubMed  Google Scholar 

  • Zeitz C, Kloeckener-Gruissem B, Forster U, Kohl S, Magyar I, Wissinger B, Mátyás G, Borruat FX, Schorderet DF, Zrenner E, Munier FL, Berger W (2006) Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. Am J Hum Genet 79:657–667

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zeitz C, Jacobson SG, Hamel CP, Bujakowska K, Neuillé M, Orhan E, Zanlonghi X, Lancelot ME, Michiels C, Schwartz SB, Bocquet B, Antonio A, Audier C, Letexier M, Saraiva JP, Luu TD, Sennlaub F, Nguyen H, Poch O, Dollfus H, Lecompte O (2013) Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 92:67–75

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhiqi S, Soltani MH, Bhat KM, Sangha N, Fang D, Hunter JJ, Setaluri V (2004) Human melastatin 1 (TRPM1) is regulated by MITF and produces multiple polypeptide isoforms in melanocytes and melanoma. Melanoma Res 14:509–516

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Furukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Irie, S., Furukawa, T. (2014). TRPM1. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54215-2_15

Download citation

Publish with us

Policies and ethics