Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 222))

Abstract

Transient receptor potential vanilloid type 2, TRPV2, is a calcium-permeable cation channel belonging to the TRPV channel family. This channel is activated by heat (>52 °C), various ligands, and mechanical stresses. In most of the cells, a large portion of TRPV2 is located in the endoplasmic reticulum under unstimulated conditions. Upon stimulation of the cells with phosphatidylinositol 3-kinase-activating ligands, TRPV2 is translocated to the plasma membrane and functions as a cation channel. Mechanical stress may also induce translocation of TRPV2 to the plasma membrane. The expression of TRPV2 is high in some types of cells including neurons, neuroendocrine cells, immune cells involved in innate immunity, and certain types of cancer cells. TRPV2 may modulate various cellular functions in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson KE, Gratzke C, Hedlund P (2010) The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int 1063:1114–1127

    Article  CAS  Google Scholar 

  • Aoyagi K, Ohara-Imaizumi M, Nishiwaki C, Nakamichi Y, Nagamatsu S (2010) Insulin/phosphoinositide 3-kinase pathway accelerates the glucose-induced first-phase insulin secretion through TrpV2 recruitment in pancreatic β-cells. Biochem J 432:375–386

    Article  PubMed  CAS  Google Scholar 

  • Bang S, Kim KY, Yoo S, Lee SH, Hwang SW (2007) Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci Lett 425:120–125

    Article  PubMed  CAS  Google Scholar 

  • Barnhill JC, Stoeks AJ, Koblan-Huberson M, Shimoda LMN, Muraguchi A, Adra CN, Turner H (2004) RGA protein associates with a TRPV ion channel during biosynthesis and trafficking. J Cell Biochem 94:808–820

    Article  CAS  Google Scholar 

  • Benham CD, Gunthope MJ, Davis JB (2003) TRPV channels as temperature sensors. Cell Calcium 33:479–487

    Article  PubMed  CAS  Google Scholar 

  • Boels K, Glassmeier G, Herrmann D, Riedel IB, Hampe W, Kojima I, Schwarz JR, Schaller HC (2001) The neuropeptide head activator induces activation and translocation of the growth factor-regulated Ca2+-permeable channel GRC. J Cell Sci 114:3599–3606

    PubMed  CAS  Google Scholar 

  • Boyd RS, Jukes-Jones R, Walewska R, Brown D, Dyer MJ, Cain K (2009) Protein profiling of plasma membrane defines aberrant signaling pathways in mantle cell lymphoma. Mol Cell Proteomics 8:1501–1515

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bubien JK, Zhou LJ, Bell PD, Frizzell RA, Tedder TF (1993) Transfection of CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol 121:1121–1132

    Article  PubMed  CAS  Google Scholar 

  • Burckhardt BC, Burckhardt G (2003) Transport of organic anions across the basolateral membrane of proximal tubular cells. Rev Physiol Biochem Pharmacol 146:95–158

    Article  PubMed  CAS  Google Scholar 

  • Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Kreig PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neuron, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  PubMed  CAS  Google Scholar 

  • Caprodossi S, Lucciarini R, Amantini C, Nabbisi M, Canesin G, Ballarini P, Di Spilimbergo A, Cardarelli MS, Servi L, Mammana G, Santoni G (2008) Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and urothelial carcinoma of human bladder: correlation with the pathologic state. Eur Urol 54:612–620

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:435–441

    Google Scholar 

  • Cavanaugh DJ, Chesler AT, Jacjson AC, Sigal YM, Yamanaka H, Grant R, O’Donnell O, Nicholl RA, Shah NM, Julius D, Basbaum Al (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci 31:5067–5077

    Google Scholar 

  • Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL (2008) Removal of sialic acid involving klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 105:9805–9810

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang Q, Heef S, Vander Kemp AW, Tepala CN, Bindel RJ, Hoenderop JG (2005) The β-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–493

    Article  PubMed  CAS  Google Scholar 

  • Cheng W, Yang F, Takanishi CL, Zheng J (2007) Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol 129:191–207

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channel, is required for olfaction, mechanosensation and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269

    PubMed  CAS  Google Scholar 

  • Cordeiro S, Seyler S, Stindl J, Milenkovic VM, Strauss O (2010) Heat-sensitive TRPV channels in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 51:6001–6008

    Article  PubMed  Google Scholar 

  • Cushman SV, Wardzala LJ (1980) Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. J Biol Chem 255:4758–4762

    PubMed  CAS  Google Scholar 

  • De Petrocellis L, Ligresti A, Moriello AS, Allara M, Bisogno T, Petrosino S, Stott CG, Di Marzo V (2011) Effects of cannabinoids and cannabinoid-enriched cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163:1479–1494

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112:744–760

    Article  PubMed  CAS  Google Scholar 

  • Dobrydneva Y, Blackmore P (2001) 2-Animoethoxydiphenyl borate directly inhibits store-operated calcium entry channels in human platelets. Mol Pharmacol 60:541–552

    PubMed  CAS  Google Scholar 

  • Everaerts W, Vriens J, Owsianik G, Appendino G, Voets T, Ridder DD, Nillius B (2009) Functional characterization of transient receptor potential channels in mouse urothelial cells. Am J Physiol 298:F692–F701

    Google Scholar 

  • Fanntozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JXJ (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285:L1233–L1245

    Google Scholar 

  • Gao X, Wu L, O’Neil RG (2003) Temperature-modulated diversity of TRPV4 channel gating: activator by physical stresses and phorbol ester derivatives through protein kinase C-dependent and independent pathways. J Biol Chem 278:27129–27137

    Article  PubMed  CAS  Google Scholar 

  • Garicia-Sanz N, Fernandez-Carvajar A, Morenilla-Parao C, Planells-Case R, Fajardo-Sanchez E, Fernandez-Ballester G, Ferrer-Montiel A (2004) Identification of a tetramerization domain in the C-terminus of the vanilloid receptor. J Neurosci 24:5307–5314

    Article  CAS  Google Scholar 

  • Gibbs JC, Melnyk JL, Basbaum AI (2011) Differential TRPV1 and TRPV2 channel expression in dental pulp. J Dent Res 90:765–770

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gkika D, Prevarskaya N (2011) TRP channels in prostate cancer: the good, the bad and the ugly? Asian J Androl 13:673–676

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamamoto Y, Takumida M, Hirakuwa K, Tatsukawa T, Ishibashi T (2008) Localization of transient receptor potential vanilloid (TRPV) in the human larynx. Acta Otolaryngol 129:495–507

    Google Scholar 

  • Heiner I, Eisfeld J, Luckholl A (2003) Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 33:533–540

    Article  PubMed  CAS  Google Scholar 

  • Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118:918–928

    Article  CAS  Google Scholar 

  • Hisanaga E, Nagasawa M, Ueki K, Kuikarni R, Mori M, Kojima I (2009) Regulation of calcium-permeable channel TRPV2 by insulin in pancreatic β-cells. Diabetes 58:174–184

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Holakovska B, Grycova L, Bily J, Teisinger J (2011) Characterization of calmodulin-binding domains in TRPV2 and TRPV5 C-tails. Amino Acids 40:741–748

    Article  PubMed  CAS  Google Scholar 

  • Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kowada M, Lee LY, Wood JD, Zhu MX (2004) 2-Aminoethyldiphenyl borate is a common activator of TRPV1, TRPV2 and TRPV3. J Biol Chem 279:35741–35748

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Sugimoto T (2001) VR1-immunoreactive primary sensory neurons in the rat trigeminal ganglion. Brain Res 890:184–188

    Article  PubMed  CAS  Google Scholar 

  • Ignatowska-Jankowska B, Jankowski M, Glac W, Swiergel AH (2009) Cannabidiol-induced lymphopenia does not involve NKT and NK cells. J Physiol Pharmacol 60:99–103

    PubMed  Google Scholar 

  • Inoue R, Jensen LJ, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131

    Article  PubMed  CAS  Google Scholar 

  • Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 161:957–967

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S (2009) Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal model. Hum Mol Genet 18:824–834

    PubMed  CAS  Google Scholar 

  • Jahnel R, Bender O, Munber LM, Dreger M, Gillen C, Hucho F (2003) Dual expression of mouse and rat VRL-1 in the dorsal root ganglion derived cell line F11 and biochemical analysis of VRL-1 after heterologous expression. Eur J Biochem 270:4264–4271

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Touhey J, Gaudet R (2006) Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281:25006–25010

    Article  PubMed  CAS  Google Scholar 

  • Juvin V, Penna A, Chemin J, Lin YL, Rassedren FA (2007) Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Mol Pharmacol 72:1250–1268

    Article  CAS  Google Scholar 

  • Kajiya H, Okamoto F, Nemoto T, Kimachi K, Toh-goto K, Nakayama S, Okabe K (2010) RANKL-induced TRPV2 expression regulates osteoclastogenesis via calcium oscillation. Cell Calcium 48:260–269

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki M, Nie L, Shibata H, Kojima I (1997) Activation of a calcium-permeable channel CD20 expressed in Balb/c 3T3 cells by insulin-like growth factor-I. J Biol Chem 272:2964–2969

    Article  Google Scholar 

  • Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1:165–170

    Article  PubMed  CAS  Google Scholar 

  • Kashiba H, Uchida Y, Takada D, Nishigori A, Ueda Y, Kuribayashi K, Ohshima M (2004) TRPV2-immunoreactive intrinsic neurons in the rat intestine. Neurosci Lett 366:193–196

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84

    Article  PubMed  CAS  Google Scholar 

  • Kippenberger S, Loitch S, Guschel M, Muller J, Knies Y, Kaufman R, Bernd A (2005) Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor. J Biol Chem 280:3060–3067

    Article  PubMed  CAS  Google Scholar 

  • Koch SE, Gao XQ, Haar L, Jiang M, Lasko VM, Robbins N, Cai W, Brokamp C, Varma P, Tranter M, Liu Y, Ren XP, Lorenz JN, Wang HS, Jones WK, Rubinstein J (2012) Probenecid: novel use as a non-injurious positive inotrope acting via cardiac TRPV2 stimulation. J Mol Cell Cardiol 53:134–144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763

    Article  PubMed  CAS  Google Scholar 

  • Koike S, Uno T, Bamba H, Shibata T, Okano H, Hisa Y (2004) Distribution of vanilloid receptors in the rat laryngeal innervation. Acta Otolaryngol 124:515–519

    Article  PubMed  CAS  Google Scholar 

  • Kojima I, Nagasawa M (2007) TRPV2: a calcium-permeable cation channel regulated by insulin-like growth factor. In: Liedtke WB, Heller S (eds) TPP ion channel function in sensory transduction and cellular signaling cascade. CRC, Boca Raton, FL

    Google Scholar 

  • Kojima I, Matsunaga H, Kurokawa K, Ogata E, Nishimoto I (1988) Calcium influx: an intracellular message of the mitogenic action of insulin-like growth factor-I. J Biol Chem 263:16561–16567

    PubMed  CAS  Google Scholar 

  • Kojima I, Mogami H, Shibata H, Ogata E (1993) Role of calcium entry and protein kinase C in the progression activity of insulin-like growth factor-I. J Biol Chem 268:10003–10006

    PubMed  CAS  Google Scholar 

  • Komatsu H, Kojima M, Tsutsumi N, Hamano S, Kusama H, Ujiie A, Ikeda S, Nakazawa M (1988) Mechanism of inhibitory action of tranilast on the release of SRS-A in vitro. Jpn J Pharmacol 46:53–60

    Article  PubMed  CAS  Google Scholar 

  • Kowase T, Nakazato Y, Yoko-o H, Morikawa A, kojima I (2003) Immunohistochemical localization of growth factor-regulated channel (GRC) in human tissues. Endocr J 49:349–355

    Article  Google Scholar 

  • Leffler A, Linte RM, Nau C, Reeh P, Babes A (2007) A high-threshold heat-activated channels in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadrinium. Eur J Neurosci 26:12–22

    Article  PubMed  Google Scholar 

  • Lehen’kyi V, Prevarskaya N (2012) TRPV2 (transient receptor potential cation channel, subfamily v, member 2). Atlas Cenet Cytogenet Oncol Haematol 16:563–567

    Google Scholar 

  • Lenonnier L, Pravarskay N, Mazurier J, Shuba Y, Skryma R (2004) 2-APB inhibits volume-regulated anion channels independently from intracellular calcium signaling modulation. FEBS Lett 566:121–126

    Article  CAS  Google Scholar 

  • Lewinter RD, Skinner K, Julius D, Basbaum AI (2004) Immunoreactive TRPV2, a capsaicin receptor homolog, in the spinal cord of the rat. J Comp Neurol 470:400–408

    Article  PubMed  CAS  Google Scholar 

  • Liapi A, Wood JN (2005) Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci 22:825–834

    Article  PubMed  Google Scholar 

  • Lin Y, Sun Z (2012) Antiaging gene klotho enhances glucose-induced insulin secretion by up-regulating plasma-membrane levels of TRPV2 in MIN6 cells. Endocrinology 153:3029–3039

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Linder S, Apfelbacher M (2003) Podosomes: adhesion hot spot of invasive cells. Trends Cell Biol 13:376–385

    Article  PubMed  CAS  Google Scholar 

  • Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11:232–239

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lioudyno MI, Kozak JA, Penna A, Safrina O, Zhang SL, Sen D (2008) Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc Natl Acad Sci USA 105:2011–2016

    Article  PubMed Central  PubMed  Google Scholar 

  • Lishko PV, Thyagarajan B, Lukas V (2007) The ankyrin repeats of TRPV1 binds multiple ligands and modulate channel activity. Neuron 54:905–918

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Xie C, Sun F, Xu X, Yang Y, Zhang T, Deng Y, Wang D, Huang Z, Yang L, Huang S, Wang Q, Liu G, Zhong D, Miao X (2010) Clinical significance of transient receptor potential vanilloid 2 expression in human hepatocellular carcinoma. Cancer Genet Cytogenet 197:54–59

    Article  PubMed  CAS  Google Scholar 

  • Ma QP (2001) Vanilloid receptor homolog, VRL1, is expressed by both A- and C-fiber sensory neurons. Neuroreport 12:3693

    Article  PubMed  CAS  Google Scholar 

  • Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-permeable modulator of Ins (1, 4, 5)P3-induced Ca2+ release. J Biochem 122:498–505

    Article  PubMed  CAS  Google Scholar 

  • McCleverty CJ, Koesema E, Patapoutian A, Lesley SA, Kreusch A (2006) Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci 15:2201–2206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mercado J, Gordon-Shaag A, Zagotta WN, Gordon SE (2010) Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4, 5-bisphosphate. J Neurosci 30:13338–13347

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mihara H, Boudaka A, Shibasaki K, Yamanaka A, Sugiyama T, Tominaga M (2010) Involvement of TRPV2 activation in intestinal movement through nitric oxide production in mice. J Neurosci 30:16536–16544

    Article  PubMed  CAS  Google Scholar 

  • Monet M, Gkika D, Lehen’kyi V, Pourties A, Abeele FV, Bidaux G, Juvin V, Rassendren F, Humez S, Pravaesakaya N (2009) Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim Biophys Acta 1793:528–539

    Article  PubMed  CAS  Google Scholar 

  • Monet M, Lehen’kyi V, Gackiere F, Firlej V, Vandenberghe M, Rassendren F, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C, Humez S, Prevarsakaya N (2010) Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res 70:1225–1235

    Article  PubMed  CAS  Google Scholar 

  • Morelli MB, Nabissi M, Amantini C, Farfariello V, Ricci-vitiani L, Martino S, Pallini R, Laroca LM, Caprodossi S, Santoni M, Maria RD, Santoni G (2012) The transient receptor potential vanilloid-2 cation channel impairs glioblastoma stem-like cell proliferation and promotes differentiation. Int J Cancer 131:E1067–E1077

    Article  PubMed  CAS  Google Scholar 

  • Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–838

    Article  PubMed  CAS  Google Scholar 

  • Nabissi M, Morelli MB, Amantini C, Farfariello V, Ricci-Vitiani L, Caprodossi S, Arcella A, Santoni M, Giangaspero F, DeMaria R, Santoni G (2010) TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner. Carcinogenesis 31:794–803

    Article  PubMed  CAS  Google Scholar 

  • Nabissi M, Morelli MB, Santoni M, Santoni G (2013) Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis 34:48–57

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa M, Kojima I (2012) Translocation of calcium-permeable TRPV2 channel to the podosome: its role in the regulation of podosome assembly. Cell Calcium 51:186–193

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa M, Nakagawa Y, Tanaka S, Kojima I (2007) Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol 210:692–702

    Article  PubMed  CAS  Google Scholar 

  • Nedungadi TP, Dutta M, Mathina CS, Caterina MJ, Cunningham JT (2012a) Expression and distribution of TRPV2 in rat brain. Exp Neurol 237:223–237

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nedungadi TP, Carreno FR, Walch JD, Bathina CS, Cunningham JT (2012b) Region-specific changes in transient receptor potential vanilloid channel expression in the vasopressin magnocellular system in hepatic-cirrhosis-induced hyponatremia. J Neuroendocrinol 24:624–652

    Article  CAS  Google Scholar 

  • Neeper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N (2007) Activation properties of heterologously expressed mammalian TRPV2: evidence of species difference. J Biol Chem 282:15894–15902

    Article  PubMed  CAS  Google Scholar 

  • Negishi-Koga T, Takayanagi H (2009) Ca2+-NFATc signaling is an essential axis of osteoclast differentiation. Immunol Rev 231:241–256

    Article  PubMed  CAS  Google Scholar 

  • Nie L, Mogami H, Kanzaki M, Shibata H, Kojima I (1996) Blockade of DNA synthesis induced by platelet-derived growth factor by tranilast, an inhibitor of calcium entry, in vascular smooth muscle cells. Mol Pharmacol 50:763–769

    PubMed  Google Scholar 

  • Nie L, Oishi Y, Doi I, Shibata H, Kojima I (1997) Inhibition of proliferation of MCF-7 breast cancer cells by a blocker of Ca2+-permeable channel. Cell Calcium 22:75–82

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Prenen J, Weissenbach U, Bodding M, Droogmans G (2001) Differential activation of the volume-sensitive cation channel TRPV2 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch 443:227–233

    Article  PubMed  CAS  Google Scholar 

  • Numazaki M, Tominaga T, Takeuchi K, Murayama K, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100:8002–8006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Odell AF, Scott JL, Helden DFV (2005) Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 280:37974–37987

    Article  PubMed  CAS  Google Scholar 

  • Park KS, Kim Y, Lee YH, Earm YE, Ho WK (2003) Mechanosensitive cation channel in arterial smooth muscle cells are activated by diacylglycerol and inhibited by phospholipase C inhibitor. Circ Res 93:557–564

    Article  PubMed  CAS  Google Scholar 

  • Park KS, Pang B, Park S, Lee YG, Bae JY, Park S (2011a) Identification and functional characterization of ion channels in CD34(+) hematopoietic stem cells from human peripheral blood. Mol Cell 32:181–188

    Article  CAS  Google Scholar 

  • Park U, Vastani N, Guan Y, Raja SNM, Koltzenburg M, Caterina MJ (2011b) TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci 31:11425–11436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Peng G, Lu W, Li X, Chen Y, Zhang N, Ran P, Wang J (2010) Expression of store-operated Ca2+ entry and transient receptor potential canonical and vanilloid-related proteins in rat distal pulmonary venous smooth muscle. Am J Physiol Lung Cell Mol Physiol 299:L621–L630

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Penna A, Juvin V, Chemin J, Compan V, Monet M, Rassendren FA (2006) PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane. Cell Calcium 39:495–507

    Article  PubMed  CAS  Google Scholar 

  • Peppelenbosch MP, Tertoolen LG, Vrien-Smits AMM, Qiu RG, M’Rabet L, Symons MH, de Laat SW, Bos JL (1996) Rac-dependent and -independent pathways mediate growth factor-induced Ca2+ influx. J Biol Chem 271:7883–7886

    Article  PubMed  CAS  Google Scholar 

  • Phelps CB, Procko E, Lishko PV, Wang RR, Gaudet R (2007) Insights into the roles of conserved and divergent residues in the ankyrin repeats of TRPV ion channels. Channels 1:148–151

    PubMed  Google Scholar 

  • Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3 and TRPV4 sensitivity through a conserved biding site on the ankyrin repeat domain. J Biol Chem 285:731–740

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qin N, Neeper MP, Liu Y, Huchinson TL, Lubin ML, Flores CM (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28:6231–6238

    Article  PubMed  CAS  Google Scholar 

  • Robbin N, Koch SE, Tranter M, Rubinstein J (2012) The history and future of probenecid. Cardiovasc Toxicol 12:1–9

    Article  CAS  Google Scholar 

  • Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123:53–62

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rutter AR, Ma QP, Leveridge M, Bonnert TP (2005) Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglion. Neuroreport 16:1735–1739

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Hanson PI, Schlesinger P (2007) Luminal chloride-dependent activation of endosome calcium channels. J Biol Chem 282:27327–27333

    Article  PubMed  CAS  Google Scholar 

  • Santoni G, Farfariello V, Liberati S, Morelli MB, Nabbisi M, Santoni M, Amantini C (2013) The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune systems. Front Immunol 4:1–9

    Article  Google Scholar 

  • Sato M, Sobban U, Tsumura M, Kuroda H, Soya M, Masamura A, Nishiyama A, Katakura A, Ichinohe T, Tazaki M, Shibukawa Y (2013) Hypotonic-induced stretching of plasma membrane activates transient receptor potential vanilloid channels and sodium-calcium exchangers in mouse odontoblasts. J Endod 39:779–787

    Article  PubMed  Google Scholar 

  • Sauer K, Jegla TJ (2006) Methods for identifying T cell activation modulating compounds. Patent Application WO/2006/065613

    Google Scholar 

  • Saunders CI, Kunde DA, Crawford A, Geraghty DP (2007) Expression of transient receptor potential vanilloid 1 (TRPV1) and 2 (TRPV2) in human peripheral blood. Mol Immunol 44:1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MA, Brown EJ, Fazeli B (1993) A 50-KDa integrin-associated protein is required for integrin-regulated calcium entry in endothelial cells. J Biol Chem 268:19931–19934

    PubMed  CAS  Google Scholar 

  • Shibasaki K, Murayama N, Ono K, Ishizaki Y, Tominaga M (2010) TRPV enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J Neurosci 30:4601–4612

    Article  PubMed  CAS  Google Scholar 

  • Shibata H, Omata W, Kojima I (1995) Dissection of GLUT4 recycling pathway into exocytosis and endocytosis in rat adipocytes. J Biol Chem 270:11489–11495

    Article  PubMed  CAS  Google Scholar 

  • Shimohira D, Kido MA, Danjo A, Takao T, Wang B, Zhang JQ, Yamazaki T, Masuko S, Goto M, Tanaka T (2009) TRPV2 expression in rat oral mucosa. Histochem Cell Biol 132:423–433

    Article  PubMed  CAS  Google Scholar 

  • Son AR, Yang YM, Hong JH, Lee SI, Shibukawa Y, Shin DM (2009) Odontoblast TRP channels and thermo/mechanical transmission. J Dent Res 88:1014–1019

    Article  PubMed  CAS  Google Scholar 

  • Spinsanti G, Zannolli R, Panti C, Ceccarelli I, Mareili L, Bachicco V (2008) Quantitative real time PCR detection of TRPV-4 gene expression in human leukocytes from healthy and hyposensitive subjects. Mol Pain 4:51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stokes AJ, Shimoda IM, Koblan-Huberson M, Adra CN, Turner H (2004) TRPV2-PKA signaling module for transduction of physical stimuli in mast cells. J Exp Med 200:137–147

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stokes AJ, Wakano C, Del Carmen KA, Koblan-Huberson M, Turner H (2005) Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2. J Cell Biochem 94:669–683

    Article  PubMed  CAS  Google Scholar 

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suzuki K, Kono T (1980) Evidence that insulin causes translocation of glucose transport activity to plasma membrane from an intracellular storage site. Proc Natl Acad Sci USA 77:2542–2545

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue K, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc (NFAT2) integrate RANK signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61:3–12

    Article  PubMed  Google Scholar 

  • Urrutia R, Henley JR, Cook T, McNiven MA (1997) The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc Natl Acad Sci USA 94:377–384

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vriends J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75:1262–1279

    Article  CAS  Google Scholar 

  • Vriens J, Janssens A, Prenen J, Nilius B, Wondergem R (2004) TRPV channels and modulation by hepatocyte growth factor in human hepatoblastoma (HepG2) cells. Cell Calcium 36:19–28

    Article  PubMed  CAS  Google Scholar 

  • Wainszelbaum MJ, Proctor BM, Pountow SE, Stahl PD, Barbieri A (2006) IL4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent. Exp Cell Res 312:2238–2251

    Article  PubMed  CAS  Google Scholar 

  • Wirkner K, Hognestad H, Jahnel R, Hucho F, Illes P (2005) Characterization of rat transient potential vanilloid receptors lacking the N-glycosylation site N604. Neuroreport 16:947–1001

    Article  Google Scholar 

  • Xiao R, Xu XZ (2011) C. elegans TRP channels. Adv Exp Med Biol 704:323–339

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yamada T, Ueda T, Shibata Y, Ikegami Y, Saito M, Ishida Y, Ugawa S, Kohri K, Shimada S (2010) TRPV2 activation induces apoptotic cell death in human T-24 bladder cancer cells: a potential therapeutic target for bladder cancer. Urology 76(509):e1–e17

    PubMed  Google Scholar 

  • Yamamoto Y, Taniguchi K (2005) Immunolocalization of VR1 and VRL1 in rat larynx. Auton Neurosci 117:62–65

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro K, Sasano T, Tojo K, Namekata I, Kurokawa I, Sawada N (2010) Role of transient receptor potential vanilloid-2 in macrophages. Biochem Biophys Res Commun 398:284–289

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Liu B, Qin F (2011) Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc Natl Acad Sci USA 108:11109–11114

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu W, Hill WG, Apodaca G, Zeidel ML (2011) Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. Am J Physiol Renal Physiol 300:F49–F59

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang D, Spielman A, Wang L, Ding G, Huang F, Gu Q (2012) Mast cell degranulation induced by physical stimuli involves the activation of transient receptor potential channel TRPV2. Physiol Res 61:113–124

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mayumi Odagiri for excellent secretarial assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Kojima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kojima, I., Nagasawa, M. (2014). TRPV2. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54215-2_10

Download citation

Publish with us

Policies and ethics