Skip to main content

TRPs: Truly Remarkable Proteins

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 222))

Abstract

The family of transient receptor potential cation channels has received in the last 10 years a tremendous interest because members of this family are involved in a plethora of cell functions and have been identified as causal for many hereditary and acquired diseases. We shortly introduce these channels, summarize nomenclature and chromosomal location of the 28 mammalian Trp genes, and list the available Trp-deficient mouse lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramowitz J, Birnbaumer L (2007) Know thy neighbor: a survey of diseases and complex syndromes that map to chromosomal regions encoding TRP channels. Handb Exp Pharmacol 179:379–408

    Article  PubMed  CAS  Google Scholar 

  • Barbet G, Demion M, Moura IC, Serafini N, Leger T, Vrtovsnik F et al (2008) The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9(10):1148–1156

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124(6):1269–1282

    Article  PubMed  CAS  Google Scholar 

  • Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL et al (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204–208

    Article  PubMed  CAS  Google Scholar 

  • Bianco SD, Peng JB, Takanaga H, Suzuki Y, Crescenzi A, Kos CH et al (2007) Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res 22(2):274–285

    Article  PubMed  CAS  Google Scholar 

  • Castiglioni AJ, Remis NN, Flores EN, Garcia-Anoveros J (2011) Expression and vesicular localization of mouse Trpml3 in stria vascularis, hair cells, and vomeronasal and olfactory receptor neurons. J Comp Neurol 519(6):1095–1114

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    Article  PubMed  CAS  Google Scholar 

  • Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR et al (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54(3):379–386

    Article  PubMed  CAS  Google Scholar 

  • Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Perez CA, Shigemura N et al (2006) Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 31(3):253–264

    Article  PubMed  CAS  Google Scholar 

  • Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18(18):R880–R889

    Article  PubMed  CAS  Google Scholar 

  • Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54(3):371–378

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G et al (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25(16):6980–6989

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dietrich A, Kalwa H, Storch U, Mederos y Schnitzler M, Salanova B, Pinkenburg O et al (2007) Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455(3):465–477

    Article  PubMed  CAS  Google Scholar 

  • Flockerzi V, Nilius B (eds) (2007) Transient receptor potential (TRP) channels, vol 179, Handbook of experimental pharmacology. Springer, Berlin

    Google Scholar 

  • Freichel M, Flockerzi V (2007) Biological functions of TRPs unravelled by spontaneous mutations and transgenic animals. Biochem Soc Trans 35(Pt 1):120–123

    PubMed  CAS  Google Scholar 

  • Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P et al (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 3(2):121–127

    Article  PubMed  CAS  Google Scholar 

  • Freichel M, Kriebs U, Vogt D, Mannebach S, Weissgerber P (2011) Strategies and protocols to generate mouse models with targeted mutations to analyze TRP channel functions. In: Zhu MX (ed) TRP channels. CRC, Boca Raton, FL, pp 167–193

    Google Scholar 

  • Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2(10):a003962

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gees M, Owsianik G, Nilius B, Voets T (2012) TRP channels. Comp Physiol 2(1):563–608

    Google Scholar 

  • Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J et al (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59(3):392–398

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hirschler-Laszkiewicz I, Zhang W, Keefer K, Conrad K, Tong Q, Chen SJ et al (2012) Trpc2 depletion protects red blood cells from oxidative stress-induced hemolysis. Exp Hematol 40(1):71–83

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM et al (2003) Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112(12):1906–1914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y, Matsunami H et al (2011) Sour taste responses in mice lacking PKD channels. PloS One 6(5):e20007

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322(5902):756–760

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jors S, Grimm C, Becker L, Heller S (2010) Genetic inactivation of Trpml3 does not lead to hearing and vestibular impairment in mice. PloS One 5(12):e14317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koike C, Obara T, Uriu Y, Numata T, Sanuki R, Miyata K et al (2010) TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci USA 107(1):332–337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ et al (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50(2):277–289

    Article  PubMed  CAS  Google Scholar 

  • Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA 99(9):6376–6381

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci USA 100(23):13698–13703

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2(4):1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS et al (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307(5714):1468–1472

    Article  PubMed  CAS  Google Scholar 

  • Moran MM, McAlexander MA, Biro T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10(8):601–620

    Article  PubMed  CAS  Google Scholar 

  • Morgans CW, Zhang J, Jeffrey BG, Nelson SM, Burke NS, Duvoisin RM et al (2009) TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci USA 106(45):19174–19178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):218–229

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14(2):152–163

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217

    Article  PubMed  CAS  Google Scholar 

  • Owsianik G, D’Hoedt D, Voets T, Nilius B (2006) Structure-function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 156:61–90

    PubMed  CAS  Google Scholar 

  • Park U, Vastani N, Guan Y, Raja SN, Koltzenburg M, Caterina MJ (2011) TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci 31(32):11425–11436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J et al (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12(11):938–943

    Article  PubMed  CAS  Google Scholar 

  • Perez-Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P (2011) Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. Eur J Neurosci 33(5):856–867

    Article  PubMed Central  PubMed  Google Scholar 

  • Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U et al (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137(4):761–772

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP et al (2010) TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun 1:109

    Article  PubMed Central  PubMed  Google Scholar 

  • Shen Y, Heimel JA, Kamermans M, Peachey NS, Gregg RG, Nawy S (2009) A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J Neurosci 29(19):6088–6093

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71

    Article  PubMed  CAS  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295(5559):1493–1500

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278(25):22664–22668

    Article  PubMed  CAS  Google Scholar 

  • Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE et al (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8(3):312–320

    Article  PubMed  CAS  Google Scholar 

  • Venugopal B, Browning MF, Curcio-Morelli C, Varro A, Michaud N, Nanthakumar N et al (2007) Neurologic, gastric, and ophthalmologic pathologies in a murine model of mucolipidosis type IV. Am J Hum Genet 81(5):1070–1083

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X et al (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494

    Article  PubMed  CAS  Google Scholar 

  • Walder RY, Yang B, Stokes JB, Kirby PA, Cao X, Shi P et al (2009) Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum Mol Genet 18(22):4367–4375

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weissgerber P, Kriebs U, Tsvilovskyy V, Olausson J, Kretz O, Stoerger C et al (2011) Male fertility depends on Ca2+ absorption by TRPV6 in epididymal epithelia. Sci Signal 4(171):ra27

    PubMed  Google Scholar 

  • Weissgerber P, Kriebs U, Tsvilovskyy V, Olausson J, Kretz O, Stoerger C et al (2012) Excision of Trpv6 gene leads to severe defects in epididymal Ca2+ absorption and male fertility much like single D541A pore mutation. J Biol Chem 287(22):17930–17941

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92(21):9652–9656

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Woudenberg-Vrenken TE, Sukinta A, van der Kemp AW, Bindels RJ, Hoenderop JG (2011) Transient receptor potential melastatin 6 knockout mice are lethal whereas heterozygous deletion results in mild hypomagnesemia. Nephron Physiol 117:11–19

    Article  Google Scholar 

  • Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM et al (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93(2):177–188

    Article  PubMed  CAS  Google Scholar 

  • Wu LJ, Sweet TB, Clapham DE (2010) International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62(3):381–404

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xue T, Do MT, Riccio A, Jiang Z, Hsieh J, Wang HC et al (2011) Melanopsin signalling in mammalian iris and retina. Nature 479(7371):67–73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y et al (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14(7):738–747

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D et al (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112(3):293–301

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373(3):193–198

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veit Flockerzi or Bernd Nilius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flockerzi, V., Nilius, B. (2014). TRPs: Truly Remarkable Proteins. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54215-2_1

Download citation

Publish with us

Policies and ethics