Fast Calculation of the Empty Volume in Molecular Systems by the Use of Voronoi-Delaunay Subsimplexes

  • V. P. Voloshin
  • N. N. Medvedev
  • A. Geiger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8360)


The calculation of the occupied and empty volume in an ensemble of overlapping spheres is not a simple task in general. There are different analytical and numerical methods, which have been developed for the treatment of specific problems, for example the calculation of local intermolecular voids or ‒ vice versa ‒ of the volume of overlapping atoms. A very efficient approach to solve these problems is based on the Voronoi-Delaunay subsimplexes, which are special triangular pyramids defined at the intersection of a Voronoi polyhedron and Delaunay simplex. The subsimplexes were proposed in a paper [1] (Sastry al., Phys. Rev. E, vol.56, 5524–5532, 1997) for the calculation of the cavity volume in simple liquids. Later, the subsimplexes were applied for the treatment of the union of strongly overlapping spheres [2] (Voloshin V.P. et al., Proc. of the 8th ISVD, 170–176, 2011). In this article we discuss wider applications of subsimplexes for the calculation of the occupied and empty volumes of different structural units, selected in molecular systems. In particular, we apply them to Voronoi and Delaunay shells, defined around a solute, as well as their intersection. It opens a way to calculate the components of the partial molar volume of a macromolecule in solution, what is important for the interpretation of experimental volumetric data for protein solutions. The method is illustrated by the application to molecular dynamics models of a hIAPP polypeptide molecule in water at different temperatures.


Molecular dynamics simulation solutions bio-molecules partial molar volume Voronoi diagram Delaunay simplex molecular volume occupied volume empty volume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sastry, S., Corti, D.S., Debenedetti, P.G., Stillinger, F.H.: Statistical geometry of particle packings. I. Algorithm for exact determination of connectivity, volume, and surface areas of void space in monodisperse and polydisperse sphere packings. Phys. Rev. E 56(5), 5524–5532 (1997)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Voloshin, V.P., Anikeenko, A.V., Medvedev, N.N., Geiger, A.: An Algorithm for the Calculation of Volume and Surface of Unions of Spheres. Application for Solvation Shells. In: Proceedings of the 8th International Symposium on Voronoi Diagrams in Science and Engineering, ISVD 2011, pp. 170–176 (2011)Google Scholar
  3. 3.
    Richards, F.M.: Calculation of molecular volumes and areas for structures of known geometry. Methods Enzymol. 115, 440–464 (1985)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Connolly, M.L.: Computation of Molecular Volume. J. Am. Chem. Soc. 107, 1118–1124 (1985)CrossRefGoogle Scholar
  5. 5.
    Yang, L., Guo, G.Q., Chen, L.Y., Huang, C.L., Ge, T., Chen, D., Liaw, P.K., Saksl, K., Ren, Y., Zeng, Q.S., LaQua, B., Chen, F.G., Jiang, J.Z.: Atomic-Scale Mechanisms of the Glass-Forming Ability in Metallic Glasses. Phys. Rev. Lett. 109, 105502 (2012)CrossRefGoogle Scholar
  6. 6.
    Liang, J., Edelsbrunner, J.H., Fu, P., Sudhakar, P., Subramaniam, S.: Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins. Proteins: Struct. Func. Genet. 33, 18–29 (1998)CrossRefGoogle Scholar
  7. 7.
    Alinchenko, M.G., Anikeenko, A.V., Medvedev, N.N., Voloshin, V.P., Mezei, M., Jedlovszky, P.: Morphology of voids in molecular systems. A Voronoi-Delaunay analysis of a simulated DMPC membrane. J. Phys. Chem. B 108(49), 19056–19067 (2004)CrossRefGoogle Scholar
  8. 8.
    Kim, D., Cho, C.-H., Cho, Y., Ryu, J., Bhak, J., Kim, D.-S.: Pocket extraction on proteins via the Voronoi diagram of spheres. Journal of Molecular Graphics and Modelling 26(7), 1104–1112 (2008)CrossRefGoogle Scholar
  9. 9.
    Rémond, S., Gallias, J.L., Mizrahi, A.: Characterization of voids in spherical particle sys-tems by Delaunay empty spheres. Granular Matter 10, 329–334 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kurzidim, J., Coslovich, D., Kahl, G.: Dynamic arrest of colloids in porous environments: disentangling crowding and confinement. J. Phys.: Condens. Matter 23, 234122 (2011)Google Scholar
  11. 11.
    Chalikian, T.V.: Volumetric Properties of Proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 207–235 (2003)CrossRefGoogle Scholar
  12. 12.
    Marchi, M.: Compressibility of Cavities and Biological Water from Voronoi Volumes in Hydrated Proteins. J. Phys. Chem. B 107, 6598–6602 (2003)CrossRefGoogle Scholar
  13. 13.
    Mitra, L., Smolin, N., Ravindra, R., Royer, C., Winter, R.: Pressure perturbation calo-rimetric studies of the solvation properties and the thermal unfolding of proteins in solution—experiments and theoretical interpretation. Phys. Chem. Chem. Phys. 8, 1249–1265 (2006)CrossRefGoogle Scholar
  14. 14.
    Brovchenko, I., Andrews, M.N., Oleinikova, A.: Volumetric properties of human islet amyloid polypeptide in liquid water. Phys. Chem. Chem. Phys. 12, 4233–4238 (2010)CrossRefGoogle Scholar
  15. 15.
    Voloshin, V.P., Medvedev, N.N., Andrews, M.N., Burri, R.R., Winter, R., Geiger, A.: Volumetric Properties of Hydrated Peptides: Voronoi-Delaunay Analysis of Molecular Simulation Runs. J. Phys. Chem. B 115(48), 14217–14228 (2011)CrossRefGoogle Scholar
  16. 16.
    Cazals, F., Kanhere, H., Loriot, S.: Computing the volume of a union of balls: a certified algorithm. ACM Transactions on Mathematical Software 38(1), 3 (2011)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Procacci, P., Scateni, R.: A General Algorithm for Computing Voronoi Volumes: Application to the Hydrated Crystal of Myoglobin. International Journal of Quantum Chemistry 42, 1515–1528 (1992)CrossRefGoogle Scholar
  18. 18.
    Kim, A.V., Voloshin, V.P., Medvedev, N.N., Geiger, A.: Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers: Calculation of the Volumetric Properties. In: Gavrilova, M.L., Tan, C.J.K., Kalantari, B. (eds.) Transactions on Computational Science XX. LNCS, vol. 8110, pp. 56–71. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Voloshin, V.P., Kim, A.V., Medvedev, N.N., Winter, R., Geiger, A.: Calculation of the volumetric charateristics of macromolecules in solution by the Voronoi-Delaunay technique. J Phys. Chem. B. (submitted, 2014)Google Scholar
  20. 20.
    Mezei, M.: Modified proximity criteria for the analysis of the solvation of a polyfunctional solute. Molecular Simulation 1(5), 327–332 (1988)CrossRefGoogle Scholar
  21. 21.
    Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16, 78–96 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Medvedev, N.N.: Voronoi-Delaunay method for non-crystalline structures. SB Russian Academy of Science, Novosibirsk (2000) (in Russian)Google Scholar
  23. 23.
    David, E.E., David, C.W.: Voronoi Polyhedra as a Tool for Studying Solvation Structure. J. Chem. Phys. 76, 4611 (1982)CrossRefGoogle Scholar
  24. 24.
    Andrews, M.N., Winter, R.: Comparing the Structural Properties of Human and Rat Islet Amyloid Polypeptide by MD Computer Simulations. Biophys. Chem. 156, 43–50 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • V. P. Voloshin
    • 1
  • N. N. Medvedev
    • 1
    • 2
  • A. Geiger
    • 3
  1. 1.Institute of Chemical Kinetics and Combustion, SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Physikalische ChemieTechnische Universität DortmundDortmundGermany

Personalised recommendations