Skip to main content

Fast Calculation of the Empty Volume in Molecular Systems by the Use of Voronoi-Delaunay Subsimplexes

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8360))

Abstract

The calculation of the occupied and empty volume in an ensemble of overlapping spheres is not a simple task in general. There are different analytical and numerical methods, which have been developed for the treatment of specific problems, for example the calculation of local intermolecular voids or ‒ vice versa ‒ of the volume of overlapping atoms. A very efficient approach to solve these problems is based on the Voronoi-Delaunay subsimplexes, which are special triangular pyramids defined at the intersection of a Voronoi polyhedron and Delaunay simplex. The subsimplexes were proposed in a paper [1] (Sastry S.et al., Phys. Rev. E, vol.56, 5524–5532, 1997) for the calculation of the cavity volume in simple liquids. Later, the subsimplexes were applied for the treatment of the union of strongly overlapping spheres [2] (Voloshin V.P. et al., Proc. of the 8th ISVD, 170–176, 2011). In this article we discuss wider applications of subsimplexes for the calculation of the occupied and empty volumes of different structural units, selected in molecular systems. In particular, we apply them to Voronoi and Delaunay shells, defined around a solute, as well as their intersection. It opens a way to calculate the components of the partial molar volume of a macromolecule in solution, what is important for the interpretation of experimental volumetric data for protein solutions. The method is illustrated by the application to molecular dynamics models of a hIAPP polypeptide molecule in water at different temperatures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sastry, S., Corti, D.S., Debenedetti, P.G., Stillinger, F.H.: Statistical geometry of particle packings. I. Algorithm for exact determination of connectivity, volume, and surface areas of void space in monodisperse and polydisperse sphere packings. Phys. Rev. E 56(5), 5524–5532 (1997)

    Article  MathSciNet  Google Scholar 

  2. Voloshin, V.P., Anikeenko, A.V., Medvedev, N.N., Geiger, A.: An Algorithm for the Calculation of Volume and Surface of Unions of Spheres. Application for Solvation Shells. In: Proceedings of the 8th International Symposium on Voronoi Diagrams in Science and Engineering, ISVD 2011, pp. 170–176 (2011)

    Google Scholar 

  3. Richards, F.M.: Calculation of molecular volumes and areas for structures of known geometry. Methods Enzymol. 115, 440–464 (1985)

    Article  MathSciNet  Google Scholar 

  4. Connolly, M.L.: Computation of Molecular Volume. J. Am. Chem. Soc. 107, 1118–1124 (1985)

    Article  Google Scholar 

  5. Yang, L., Guo, G.Q., Chen, L.Y., Huang, C.L., Ge, T., Chen, D., Liaw, P.K., Saksl, K., Ren, Y., Zeng, Q.S., LaQua, B., Chen, F.G., Jiang, J.Z.: Atomic-Scale Mechanisms of the Glass-Forming Ability in Metallic Glasses. Phys. Rev. Lett. 109, 105502 (2012)

    Article  Google Scholar 

  6. Liang, J., Edelsbrunner, J.H., Fu, P., Sudhakar, P., Subramaniam, S.: Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins. Proteins: Struct. Func. Genet. 33, 18–29 (1998)

    Article  Google Scholar 

  7. Alinchenko, M.G., Anikeenko, A.V., Medvedev, N.N., Voloshin, V.P., Mezei, M., Jedlovszky, P.: Morphology of voids in molecular systems. A Voronoi-Delaunay analysis of a simulated DMPC membrane. J. Phys. Chem. B 108(49), 19056–19067 (2004)

    Article  Google Scholar 

  8. Kim, D., Cho, C.-H., Cho, Y., Ryu, J., Bhak, J., Kim, D.-S.: Pocket extraction on proteins via the Voronoi diagram of spheres. Journal of Molecular Graphics and Modelling 26(7), 1104–1112 (2008)

    Article  Google Scholar 

  9. Rémond, S., Gallias, J.L., Mizrahi, A.: Characterization of voids in spherical particle sys-tems by Delaunay empty spheres. Granular Matter 10, 329–334 (2008)

    Article  MATH  Google Scholar 

  10. Kurzidim, J., Coslovich, D., Kahl, G.: Dynamic arrest of colloids in porous environments: disentangling crowding and confinement. J. Phys.: Condens. Matter 23, 234122 (2011)

    Google Scholar 

  11. Chalikian, T.V.: Volumetric Properties of Proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 207–235 (2003)

    Article  Google Scholar 

  12. Marchi, M.: Compressibility of Cavities and Biological Water from Voronoi Volumes in Hydrated Proteins. J. Phys. Chem. B 107, 6598–6602 (2003)

    Article  Google Scholar 

  13. Mitra, L., Smolin, N., Ravindra, R., Royer, C., Winter, R.: Pressure perturbation calo-rimetric studies of the solvation properties and the thermal unfolding of proteins in solution—experiments and theoretical interpretation. Phys. Chem. Chem. Phys. 8, 1249–1265 (2006)

    Article  Google Scholar 

  14. Brovchenko, I., Andrews, M.N., Oleinikova, A.: Volumetric properties of human islet amyloid polypeptide in liquid water. Phys. Chem. Chem. Phys. 12, 4233–4238 (2010)

    Article  Google Scholar 

  15. Voloshin, V.P., Medvedev, N.N., Andrews, M.N., Burri, R.R., Winter, R., Geiger, A.: Volumetric Properties of Hydrated Peptides: Voronoi-Delaunay Analysis of Molecular Simulation Runs. J. Phys. Chem. B 115(48), 14217–14228 (2011)

    Article  Google Scholar 

  16. Cazals, F., Kanhere, H., Loriot, S.: Computing the volume of a union of balls: a certified algorithm. ACM Transactions on Mathematical Software 38(1), 3 (2011)

    Article  MathSciNet  Google Scholar 

  17. Procacci, P., Scateni, R.: A General Algorithm for Computing Voronoi Volumes: Application to the Hydrated Crystal of Myoglobin. International Journal of Quantum Chemistry 42, 1515–1528 (1992)

    Article  Google Scholar 

  18. Kim, A.V., Voloshin, V.P., Medvedev, N.N., Geiger, A.: Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers: Calculation of the Volumetric Properties. In: Gavrilova, M.L., Tan, C.J.K., Kalantari, B. (eds.) Transactions on Computational Science XX. LNCS, vol. 8110, pp. 56–71. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Voloshin, V.P., Kim, A.V., Medvedev, N.N., Winter, R., Geiger, A.: Calculation of the volumetric charateristics of macromolecules in solution by the Voronoi-Delaunay technique. J Phys. Chem. B. (submitted, 2014)

    Google Scholar 

  20. Mezei, M.: Modified proximity criteria for the analysis of the solvation of a polyfunctional solute. Molecular Simulation 1(5), 327–332 (1988)

    Article  Google Scholar 

  21. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16, 78–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Medvedev, N.N.: Voronoi-Delaunay method for non-crystalline structures. SB Russian Academy of Science, Novosibirsk (2000) (in Russian)

    Google Scholar 

  23. David, E.E., David, C.W.: Voronoi Polyhedra as a Tool for Studying Solvation Structure. J. Chem. Phys. 76, 4611 (1982)

    Article  Google Scholar 

  24. Andrews, M.N., Winter, R.: Comparing the Structural Properties of Human and Rat Islet Amyloid Polypeptide by MD Computer Simulations. Biophys. Chem. 156, 43–50 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voloshin, V.P., Medvedev, N.N., Geiger, A. (2014). Fast Calculation of the Empty Volume in Molecular Systems by the Use of Voronoi-Delaunay Subsimplexes. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XXII. Lecture Notes in Computer Science, vol 8360. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54212-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54212-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54211-4

  • Online ISBN: 978-3-642-54212-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics