\(\sqrt 3\)-Subdivision Wavelets for Sharp Features Preservation

  • Hong Xiao
  • Yuan Li
  • Jianfeng Yu
  • Jie Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8360)


Multiresolution representation and analysis of 3D models play an important role in applications such as progressive transmission, rendering and real-time interaction of complex 3D models. Since \(\sqrt 3\) subdivision is the slowest topological refinement scheme among the triangular subdivisions, and wavelets provide a natural framework for multiresolution analysis of functions, we construct a new type of \(\sqrt 3\)-subdivision wavelets using local operators. In order to maintain sharp features of 3D models, we introduce a method for sharp features identification and preservation. Subsequently, we extend the local operators to construct \(\sqrt 3\)-subdivision wavelets for sharp features preservation. The experiments show that the proposed \(\sqrt 3\)-subdivision wavelets can generate more levels of detail and maintain sharp features well when decomposing 3D models, compared with the other subdivision wavelets. Moreover, the computation involved in obtaining the multiresolution representation of 3D models is efficient, and linear in complexity.


\(\sqrt 3\) subdivision wavelet transform 3D models sharp features multiresolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Loop, C.T.: Smooth subdivision surfaces based on triangles, Dissertation for the Master Degree. University of Utah, Utah (1987)Google Scholar
  2. 2.
    Zorin, D., Schroder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: Proceedings of ACM SIGGRAPH 1996, pp. 189–192. ACM Press, New York (1996)Google Scholar
  3. 3.
    Velho, L., Zorin, D.: 4-8 subdivision. Comput. Aided Geom. Design. 18, 397–427 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Doo, D., Sabin, M.: Behavior of recursive division surfaces near extraordinary points. Comput. Aided Design. 10, 356–360 (1978)CrossRefGoogle Scholar
  5. 5.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Design. 10, 350–355 (1978)CrossRefGoogle Scholar
  6. 6.
    Li, G., Ma, W., Bao, H.: \(\sqrt 2\) subdivision for quadrilateral meshes. Visual Comput. 20, 180–198 (2004a)CrossRefGoogle Scholar
  7. 7.
    Lounsbery, M., DeRose, T., Warren, J.: Multiresolution analysis for surfaces of arbitrary topological types. ACM Transactions on Graphics 16, 34–73 (1997)CrossRefGoogle Scholar
  8. 8.
    Khodakovsky, A., Schroder, P., Sweldens, W.: Progressive geometry compression. In: Proceedings of SIGGRAPH 2000, pp. 271–278. ACM Press, New York (2000)Google Scholar
  9. 9.
    Charina, M., Stockler, J.: Tight wavelet frames for subdivision. Journal of Computational and Applied Mathematics 221, 293–301 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bertram, M.: Biorthogonal Loop-subdivision Wavelets. Computing 72, 29–39 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Charina, M., Stockler, J.: Tight wavelet frames for irregular multiresolution analysis. Appl. Comput. Harmon. Anal. 25, 98–113 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Liang, X.Z., Xue, Y.H., Li, Q.: Some applications of Loop-subdivision wavelet tight frames to the processing of 3D graphics. Visual Computer 27, 35–43 (2011)CrossRefGoogle Scholar
  13. 13.
    Kobbelt, L.: \(\sqrt 3\)-Subdivision. In: Proceedings of SIGGRAPH 2000, pp. 103–112. ACM Press, New York (2000)Google Scholar
  14. 14.
    Alliez, P., Laurent, N., Sanson, H., et al.: Efficient View-Dependent Refinement of 3D Meshes using \(\sqrt 3\)-Subdivision. Visual Computer 19, 205–221 (2003)CrossRefGoogle Scholar
  15. 15.
    Wang, H.W., Qin, K.H., Sun, H.Q.: \(\sqrt 3\)-Subdivision-Based Biorthogonal Wavelets. IEEE Transactions on Visualization and Computer Graphics 13, 914–924 (2007)CrossRefGoogle Scholar
  16. 16.
    Pulli, K., Aarnio, T., Miettinen, V., et al.: Mobile 3D Graphics with OpenGL ES and M3G. Morgan Kaufmann, Burlington (2007)Google Scholar
  17. 17.
    Li, D.G., Qin, K.H., Sun, H.Q.: Unlifted Loop Subdivision Wavelets. In: 12th Pacific Conference on Computer Graphics and Applications, pp. 25–33. IEEE Press, New York (2004)Google Scholar
  18. 18.
    Yu, R.G., Liu, Z.Y., Liu, Y.: A Local \(\sqrt 3\)-Subdivision Algorithm preserving Sharp Features. In: ICARCV 2006 9th International Conference on Control, Automation, Robotics and Vision, pp. 1–6. IEEE Press, New York (2006)CrossRefGoogle Scholar
  19. 19.
    Shi, Z., Luo, H., Niu, X.: Saliency-based structural degradation evaluation of 3D mesh simplification. IEICE Electron. Expr. 8, 161–167 (2011)CrossRefGoogle Scholar
  20. 20.
    Yu, Z., Holst, M.J., McCammon, J.A.: Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. J. Mol. Graph. Model. 26, 1370–1380 (2008)CrossRefGoogle Scholar
  21. 21.
    Chen, Y., Kamara, J.M.: A framework for using mobile computing for information management on construction sites. Automat. Constr. 20, 776–788 (2011)CrossRefGoogle Scholar
  22. 22.
    Sun, X., Yang, B., Attene, M., Li, Q., Jiang, S.: Automated abstraction of building models for 3D navigation on mobile devices. In: Geoinformatics, 2011 19th International Conference on, pp. 1–6. IEEE Press, New York (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hong Xiao
    • 1
  • Yuan Li
    • 1
  • Jianfeng Yu
    • 1
  • Jie Zhang
    • 1
  1. 1.The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of EducationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations