Skip to main content

Enabling Reliable and Efficient Network Reboot in Wireless Sensor Networks

  • Conference paper
  • First Online:
Advanced Technologies in Ad Hoc and Sensor Networks

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 295))

  • 1297 Accesses

Abstract

Wireless sensor networks often encounter unexpected failures due to a variety of reasons . Since detecting the failed nodes is normally a nontrivial work, rebooting all the nodes in the network is an effective mechanism to recover from failures. This paper presents NR, a network reboot mechanism based on TinyOS, which enables reliable and efficient network reboot in WSNs. NR ensures 100 % reliability by incorporating an eventual consistency dissemination protocol. It avoids flash I/Os by storing data items on persistent RAM. Evaluation results show that NR can ensure 100 % reliability and is efficient in I/O operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Y, He Y, Li M, Wang J, Liu K, Mo L, Dong W, Yang Z, Xi M, Zhao J, yang Li X (2011) Does wireless sensor network scale? a measurement study on GreenOrbs. In: Proceedings of INFOCOM, 2011

    Google Scholar 

  2. Szewczyk R, Polastre J, Mainwaring A, Culler D (2004) Lessons from a sensor network expedition. In: Proceedings of EWSN, 2004

    Google Scholar 

  3. Kim S, Pakzad S, Culler D, Demmel J, Fenves G, Glaser S, Turon M (2007) Health monitoring of civil infrastructures using wireless sensor networks. In: Proceedings of ACM/IEEE IPSN, 2007

    Google Scholar 

  4. Selavo L, Wood AD, Cao Q, Sookoor TI, Liu H, Srinivasan A, Wu Y, Kang W, Stankovic JA, Young D, Porter J (2007) Wireless sensor network for environmental research. In: Proceedings of ACM Sensys, 2007

    Google Scholar 

  5. Chen Y, GnawaliC O, Kazandjieva M, Levis P, Regehr J (2009) Surviving sensor network software faults. In: Proceedings of ACM SOSP, 2009

    Google Scholar 

  6. WernerAllen G, Lorincz K, Johnson J, Lees J, Welsh M (2006) Fidelity and yield in a volcano monitoring sensor network. In: Proceedings of USENIX OSDI, 2006

    Google Scholar 

  7. Tolle G, Culler D (2005) Design of an application-cooperative management system for wireless sensor networks. In: Proceedings of EWSN, 2005

    Google Scholar 

  8. Lin K, Levis P (2008) Data discovery and dissemination with DIP. In: Proceedings of ACM/IEEE IPSN, 2008

    Google Scholar 

  9. Dong W, Liu Y, Wu X, Gu L, Chen C (2010) Elon: enabling efficient and long-term reprogramming for wireless sensor network. In: Proceedings of ACM SIGMETRICS, 2010

    Google Scholar 

  10. Lachenmann A, Marrón PJ, Minder D, Rothermel K (2007) Meeting lifetime goals with energy levels. In: Proceedings of ACM SenSys, 2007

    Google Scholar 

  11. Dong W, Liu Y, He Y, Zhu T (2013) Measurement and analysis on the packet delivery performance in a large scale sensor network. In: Proceedings of INFOCOM, 2013

    Google Scholar 

  12. Zhu T, Zhong Z, He T, li Zhang Z (2010) Exploring link correlation for efficient flooding in wireless sensor networks. In: Proceedings of USENIX NSDI, 2010

    Google Scholar 

  13. Lou W, Wu J (2004) Double-covered broadcast (DCB): a simple reliable broadcast algorithm in MANETs. In: Proceedings of IEEE INFOCOM, 2004

    Google Scholar 

  14. Candea G, Kawamoto S, Fujiki Y, Friedman G, Fox A (2004) Microreboot: a technique for cheap recovery. In: Proceedings of USENIX OSDI, 2004

    Google Scholar 

  15. Levis P, Patel N, Culler D, Shenker S (2004) A self-regulating algorithm for code maintenance and propagation in wireless sensor networks. In: Proceedings of USENIX/ACM NSDI, 2004

    Google Scholar 

  16. Han C, Kumar R, Shea R, Kohler E, Srivastava M (2005) A dynamic operating system for sensor nodes. In: Proceedings of ACM MobiSys, 2005

    Google Scholar 

  17. Cao Q, Abdelzaher T (2008) The LiteOS operating system: towards Unix-like abstractions for wireless sensor networks. In: Proceedings of ACM/IEEE IPSN, 2008

    Google Scholar 

  18. Levis P, Lee N, Welsh M, Culler D (2003) TOSSIM: simulating large wireless sensor networks of tinyos motes. In: Proceedings of ACM SenSys, 2003

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China under Grant No. 61202402, the Fundamental Research Funds for the Central Universities (2012QNA5007), the Research Fund for the Doctoral Program of Higher Education of China (20120101120179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, W., Gao, Y., Zhang, X., Huang, C., Dong, W. (2014). Enabling Reliable and Efficient Network Reboot in Wireless Sensor Networks. In: Wang, X., Cui, L., Guo, Z. (eds) Advanced Technologies in Ad Hoc and Sensor Networks. Lecture Notes in Electrical Engineering, vol 295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54174-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54174-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54173-5

  • Online ISBN: 978-3-642-54174-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics