Skip to main content

Application of Nanofibers in Supercapacitors

  • Chapter
  • First Online:
Electrospun Nanofibers for Energy and Environmental Applications

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Recently, rapidly growing demand for high-speed rechargeable energy storage device with high performance has motivated a lot of researchers to develop new materials for supercapacitor. Supercapacitor is a kind of electrochemical device which stores and releases energy at extremely high rate with high power density and long cycling life. However, the energy density of supercapacitor is generally lower than that of batteries. Improving the energy density of supercapacitors while maintaining their high power density and long cycle life has been the key issue in developing future energy storage systems. Nanotechnologies, especially nanofibers, have received a great deal of attentions from various fields, such as medicine, electrical science, and energy resources, where their unique properties contribute to product functionality. As is well known, one of the effective methods of nanofiber fabrication is electrospinning, which has many advantages compared with other conventional methods, such as straightforward, inexpensive, and capability of mass production. In this chapter, the emerging innovative application of electrospun nanofiber products in supercapacitor is discussed, and some recent achievements are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burke A (2000) Ultra capacitors: why, how, and where is the technology. J Power Sources 91:37–50

    Google Scholar 

  2. Burke A (2007) R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta 53(3):1083–1091

    Google Scholar 

  3. Reddy N, Xu H, Yang Y (2011) Unique natural-protein hollow-nanofiber membrane produced by weaver ants for medical applications. Biotechnol Bioeng 108:1726–1733

    Google Scholar 

  4. Chen X, Wei S, Yadav A, Patil R, Zhu J, Ximenes R, Sun L, Guo Z (2011) Poly(propylene)/carbon nanofiber nanocomposites: ex situ solvent-assisted preparation and analysis of electrical and electronic properties. Macromol Mater Eng 296:434–443

    Google Scholar 

  5. Robert RM, Betar MG, Carl VT, Yang SH (2011) All-carbon-nanofiber electrodes for high-energy rechargeable LiO2 batteries. Energy Environ Sci 4:2952–2958

    Google Scholar 

  6. Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Google Scholar 

  7. Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for super capacitors. J Power Sources 195:3041

    Google Scholar 

  8. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    Google Scholar 

  9. Conway BE (1999) Electrochemical super capacitors: scientific fundamentals and technological applications. Plenum Publishers, New York

    Google Scholar 

  10. Yang Z, Zhang J, Kintner MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613

    Google Scholar 

  11. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Google Scholar 

  12. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785

    Google Scholar 

  13. Pico F, Rojo JM, Sanjuan ML, Anson A, Benito AM, Callejas MA, Maser WK, Martinez MT (2004) Single-walled carbon nanotubes as electrodes in supercapacitors. J Electrochem Soc 151(6):A831–A837

    Google Scholar 

  14. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Google Scholar 

  15. Jun HW, Yuwono V, Paramonov SE, Hartgerink JD (2005) Enzyme mediated degradation of peptide-amphiphile nanofiber networks. Adv Mater 17:2612–2617

    Google Scholar 

  16. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibres by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Google Scholar 

  17. Kim KO, Seo YA, Kim BS, Yoon KJ, Khil MS, Kim HY, Kim IS (2011) Transition behaviors and hybrid nanofibers of poly(vinyl alcohol) and polyethylene glycol-POSS telechelic blends. Colloid Polym Sci 289:863–870

    Google Scholar 

  18. Kimura N, Kim HK, Kim BS, Lee KH, Kim IS (2010) Molecular orientation and crystalline structure of aligned electrospun nylon-6 nanofibers: effect of gap size. Macromol Mater Eng 295:1090–1096

    Google Scholar 

  19. Sato H, Kim KO, Kim HK, Kim BS, Enomoto Y, Kim IS (2010) Fabrication of PVA-BaSO4 hybrid nanofibers and dispersion of BaSO4 particles via ultrasonic electrospinning. Fibers Polymers 11:1123–1127

    Google Scholar 

  20. Zhang M, Shao C, Guo Z, Zhang Z, Mu J, Cao T, Liu Y (2011) Hierarchical nanostructure of copper (II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl Mater Interfaces 3:369–377

    Google Scholar 

  21. Miao YE, Wang RY, Chen D, Liu ZY, Liu TX (2012) Electrospun self-standing membrane of hierarchical SiO2@γ-AlOOH (Boehmite) core/sheath fibers for water remediation. ACS Appl Mater Interfaces 4:5353–5359

    Google Scholar 

  22. Fang X, Xiao S, Shen M, Guo R, Wang S, Shi X (2011) Fabrication and characterization of water-stable electrospun polyethyleneimine/polyvinyl alcohol nanofibers with super dye sorption capability. New J Chem 35:360–368

    Google Scholar 

  23. Wang X, Wang J, Si Y, Ding B, Yu JY, Sun G, Luo W, Zheng G (2012) Nanofiber-net-binary structured membranes for highly sensitive detection of trace HCl gas. Nanoscale 4:7585–7592

    Google Scholar 

  24. Ren T, Si Y, Yang J, Ding B, Yang X, Hong F, Yu JY (2012) Polyacrylonitrile/polybenzoxazine-based Fe3O4@carbon nanofibers: hierarchical porous structure and magnetic adsorption property. J Mater Chem 22:15919–15927

    Google Scholar 

  25. Wang X, Si Y, Wang X, Yang J, Ding B, Chen L, Hu Z, Yu JY (2013) Tuning hierarchically aligned structures for high-strength PMIA–MWCNT hybrid nanofibers. Nanoscale 5: 886–889

    Google Scholar 

  26. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New York

    Google Scholar 

  27. Huang J, Sumpter BG, Meunier V (2008) Theoretical model for nanoporous carbon. Supercapacitors. Angew Chem Int Ed 47:520–524

    Google Scholar 

  28. Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferraris JP (1994) Conducting polymers as active materials in electrochemical capacitors. J Power Sources 47:89–107

    Google Scholar 

  29. Fusalba F, Gouerec P, Villers D, Belanger D (2001) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. Electrochem Soc 148:A1–A6

    Google Scholar 

  30. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153(2):413–418

    Google Scholar 

  31. Mastragostino M, Arbizzani C, Soavi F (2001) Polymer-based supercapacitors. J Power Sources 812:97–98

    Google Scholar 

  32. Brousse T, Toupin M, Dugas R, Athouel L, Crosnier O, Belanger D (2006) Crystalline MnO as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153:A2171–A2180

    Google Scholar 

  33. Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82:599–606

    Google Scholar 

  34. Wang DW, Li F, Cheng HM (2008) Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J Power Sources 185:1563–1568

    Google Scholar 

  35. Wu NL (2002) Nanocrystalline oxide supercapacitors. Mater Chem Phys 75:6–11

    Google Scholar 

  36. Tran HD, Li D, Kaner RB (2009) One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21:1487–1499

    Google Scholar 

  37. Li D, Huang JX, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Google Scholar 

  38. Wan MX (2008) A template-free method towards conducting polymer nanostructures. Adv Mater 20:2926–2932

    Google Scholar 

  39. Schultze JW, Karabulut H (2005) Application potential of conducting polymers. Electrochim Acta 50:1739–1745

    Google Scholar 

  40. Li C, Bai H, Shi GQ (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409

    Google Scholar 

  41. Lu GW, Hong WJ, Tong L, Bai H, Wei Y, Shi GQ (2008) Drying enhanced adhesion of polythiophene nanotubule arrays on smooth surfaces. ACS Nano 2:2342–2348

    Google Scholar 

  42. Bai H, Shi GQ (2007) Gas sensors based on conducting polymers. Sensors 7:267–307

    Google Scholar 

  43. Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324

    Google Scholar 

  44. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH (2002) Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sources 103:305–309

    Google Scholar 

  45. Ghosh S, Inganas O (1999) Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Adv Mater 11:1214–1218

    Google Scholar 

  46. Yan X, Tai Z, Chen J, Xue Q (2011) Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. Nanoscale 3:212–216

    Google Scholar 

  47. Domingues SH, Salvatierra RV, Oliveira MM, Zarbin AJG (2011) Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chem Commun 47:2592–2594

    Google Scholar 

  48. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Google Scholar 

  49. Huang JX, Kaner RB (2004) Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew Chem Int Ed 43:5817–5821

    Google Scholar 

  50. Huang JX, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125:314–315

    Google Scholar 

  51. Huang C, Wang S, Zhang H, Li T, Chen S, Lai C, Hou H (2006) High strength electrospun polymer nanofibers made from BPDA-PDA polyimide. Eur Polym J 42:1099–1104

    Google Scholar 

  52. Carlberg B, Ye LL, Liu J (2011) Surface-confined synthesis of silver nanoparticle composite coating on electrospun polyimide nanofibers. Small 7:3057–3066

    Google Scholar 

  53. Yang SQ, Wu DZ, Qi SL, Cui GH, Jin RG, Wu ZP (2009) Fabrication of highly reflective and conductive double-surface-silvered layers embedded on polymeric films through all-wet process at room temperature. J Phys Chem B113:9694–9701

    Google Scholar 

  54. Miao YE, Fan W, Chen D, Liu TX (2013) High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl Mater Interfaces 5(10):4423–4428

    Google Scholar 

  55. John RM, Patrice S (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Google Scholar 

  56. Fernández JA, Morishita T, Toyoda M, Inagaki M, Stoeckli F, Centeno TA (2008) Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J Power Sources 175:675–679

    Google Scholar 

  57. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Google Scholar 

  58. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Google Scholar 

  59. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    Google Scholar 

  60. Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism for MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Google Scholar 

  61. Ali IN, Satoshi Y, Kazufumi K, Takeo Y, Don NF, Hiroaki H, Motoo Y, Sumio I, Kenji H (2010) Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater 22:E235–E241

    Google Scholar 

  62. Don NF, Kenji H, Takeo Y, Tatsuki H, Yuhei H, Yozo K, Osamu T, Hiroaki H, Motoo Y, Sumio I (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5:987–994

    Google Scholar 

  63. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) The chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Google Scholar 

  64. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan HQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15: 353–389

    Google Scholar 

  65. Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang G, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165

    Google Scholar 

  66. Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater 16:2393–2397

    Google Scholar 

  67. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Google Scholar 

  68. Huang CB, Chen SL, Reneker DH, Lai CL, Hou HQ (2006) High-strength mats from electrospun poly(p-phenylene biphenyltetracarboximide) nanofibers. Adv Mater 18(5): 668–671

    Google Scholar 

  69. Donnet JB, Bansal RC (1990) Carbon fibers. Marcel Dekker, New York

    Google Scholar 

  70. Peebles LH (1995) Carbon fibers: formation, structure, and properties. CRC, Boca Raton

    Google Scholar 

  71. Chun I, Reneker DH, Fong H, Fang XY, Dietzel J, Tan NB, Kearns KJ (1999) Carbon nanofibers from polyacrylonitrile and mesophase pitch. J Adv Mater 31:36–41

    Google Scholar 

  72. Wang Y, Serrano S, Santiago-Aviles JJ (2002) Conductivity measurement of electrospun PAN-based carbon nanofiber. J Mater Sci Lett 21:1055–1057

    Google Scholar 

  73. Kim C, Yang KS (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83:1216–1219

    Google Scholar 

  74. Wang Y, Santiago-Aviles JJ, Furlan R, Ramos I (2003) Pyrolysis temperature and time dependence of electrical conductivity evolution for electrostatically generated carbon nanofibers. IEEE Trans Nanotechnol 2:39–43

    Google Scholar 

  75. Wang Y, Serrano S, Santiago-Aviles JJ (2003) Raman characterization of carbon nanofibers prepared using electrospinning. Synth Met 138:423–427

    Google Scholar 

  76. Gu SY, Ren J, Vancso GJ (2005) Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur Polym J 41:2559–2568

    Google Scholar 

  77. Lai D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel. Adv Mater 16(14):1151–1170

    Google Scholar 

  78. Kim C, Jeong YI, Nhu-Ngoc BT, Yang KS, Kojima M, Kim YA, Endo M, Lee JW (2007) Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3:91–95

    Google Scholar 

  79. Patel AC, Li S, Wang C, Zhang W, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19:1231–1238

    Google Scholar 

  80. Shin MK, Kim SS, Kim SJ, Kim SK, Lee H (2006) Reinforcement of polymeric nanofibers by ferritin nanoparticles. Appl Phys Lett 88:193901

    Google Scholar 

  81. Christopher D, Xin L, David Z, Xianyan W, Ferdinando FB, James W, Lynne AS, Jayant K (2003) Metal oxide-coated polymer nanofibers. Nano Lett 3(1):143–147

    Google Scholar 

  82. Ji Y, Li B, Ge S, Sokolov JC, Rafailovich MH (2006) Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 22:1321–1328

    Google Scholar 

  83. McCullen SD, Stevens DR, Roberts WA, Ojha SS, Clarke LI, Gorga RE (2007) Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multi-walled carbon nanotubes. Macromolecules 40(4):997–1003

    Google Scholar 

  84. Wei K, Xia JH, Kim BS, Kim IS (2011) Multiwalled carbon nanotubes incorporated bombyx Mori silk nanofibers by electrospinning. J Polym Res 18(4):579–585

    Google Scholar 

  85. Kim CK, Kim BS, Sheikh FA, Lee US, Khil MS, Kim HY (2007) Amphiphilic poly(vinyl alcohol) hybrids and electrospun nanofibers incorporating polyhedral oligosilsesquioxane. Macromolecules 40:4823–4828

    Google Scholar 

  86. Davis SR, Brough AR, Atkinson AJ (2003) Formation of silica/epoxy hybrid network polymers. J Non-Cryst Solids 315:197–205

    Google Scholar 

  87. Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32:352–418

    Google Scholar 

  88. Caruso RA, Schattka JH, Greiner A (2001) Titanium dioxide tubes from sol–gel coating of electrospun polymer fibers. Adv Mater 13:1577–1579

    Google Scholar 

  89. Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Electrospun polyacrylonitrile nanofibers containing high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17(5):967–973

    Google Scholar 

  90. Patel AC, Li S, Yuan JM, Wei Y (2006) In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett 6:1042–1046

    Google Scholar 

  91. Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932

    Google Scholar 

  92. Bazilevsky AV, Yarin AL, Megaridis CM (2007) Co-electrospinning of core-shell fibers using a single nozzle technique. Langmuir 23(5):2311–2314

    Google Scholar 

  93. Yoon B, Ma C (2005) Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh Nanoparticles for catalytic applications. J Am Chem Soc 127:17174–17175

    Google Scholar 

  94. Li XL, Liu YQ, Fu L, Cao LC, Wei DC, Wang Y (2006) Efficient synthesis of carbon nanotube–nanoparticle hybrids. Adv Funct Mater 16(18):2431–2437

    Google Scholar 

  95. Day TM, Unwin PR, Macpherson JV (2007) Factors controlling the electrodeposition of metal nanoparticles on pristine single walled carbon nanotubes. Nano Lett 7:51–57

    Google Scholar 

  96. Quinn BM, Dekker C, Lemay SG (2005) Electrodeposition of noble metals nanoparticles on carbon nanotubes. J Am Chem Soc 127:6146–6147

    Google Scholar 

  97. Qu LT, Dai LM, Osawa E (2006) Shape/size controlled synthesis of metal nanoparticles for site selective modification of carbon nanotubes. J Am Chem Soc 128:5523–5532

    Google Scholar 

  98. Choi HC, Shim M, Bangsaruntip S, Dai H (2002) Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J Am Chem Soc 124:9058–9059

    Google Scholar 

  99. Endo M, Kim YA, Ezaka M, Osada K, Yanagisawa T, Hayashi T, Terrones M, Dresselhaus MS (2003) Selective and efficient impregnation of metal nanoparticles on cup-stacked-type nanofibers. Nano Lett 3(6):723–726

    Google Scholar 

  100. Van der Lee MK, Van Dillen AJ, Bitter JH, De Jong KP (2005) Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts. J Am Chem Soc 127: 13573–13582

    Google Scholar 

  101. Tian ZQ, Jiang SP, Liang YM, Shen PK (2006) Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B 110:5343–5350

    Google Scholar 

  102. Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, Fuess H, Chen L, Zhu W, Qiu X (2006) Novel nano-composite Pt/RuO2•xH2O/CNT catalysts for DMFC. Angew Chem Int Ed 45(32):5315–5319

    Google Scholar 

  103. Hrapovic S, Liu Y, Male KB, Luong JHT (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76:1083–1088

    Google Scholar 

  104. Yang MH, Yang YH, Liu YL, Shen GL, Yu RQ (2006) Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron 21:1125–1131

    Google Scholar 

  105. Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Zhang P, Shao C, Liu Y (2011) Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale 3: 5034–5040

    Google Scholar 

  106. Zhi M, Manivannan A, Meng F, Wu N (2012) Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors. J Power Sources 208:345–353

    Google Scholar 

  107. Li L, Liu E, Shen H, Yang Y, Huang Z, Xiang X, Tian Y (2011) Charge storage performance of doped carbons prepared from polyaniline for supercapacitors. J Solid State Electrochem 15:175–182

    Google Scholar 

  108. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19:438–447

    Google Scholar 

  109. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202–5206

    Google Scholar 

  110. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477

    Google Scholar 

  111. Guo H, Gao Q (2009) Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J Power Sources 186:551–556

    Google Scholar 

  112. Lee YH, Lee YF, ChangKH HCC (2011) Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem Commun 13:50–53

    Google Scholar 

  113. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 19:1800–1809

    Google Scholar 

  114. Qian HS, Yu SH, Luo LB, Gong JY, Fei LF, Liu XM (2006) Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose. Chem Mater 18:2102–2108

    Google Scholar 

  115. Hu B, Wang K, Wu LH, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828

    Google Scholar 

  116. Liang HW, Guan QF, Chen LF, Zhu Z, Zhang WJ, Yu SH (2012) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed 51:5101–5105

    Google Scholar 

  117. Chen LF, Zhang XD, Liang HW, Kong MG, Guan QF, Chen P, Wu ZY, Yu SH (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102

    Google Scholar 

  118. Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, James RM, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Google Scholar 

  119. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4):1963–1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ick Soo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wei, K., Kim, I.S. (2014). Application of Nanofibers in Supercapacitors. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_7

Download citation

Publish with us

Policies and ethics