Skip to main content

Applications of Electrospinning in Design and Fabrication of Electrodes for Lithium-Ion Batteries

  • Chapter
  • First Online:
Electrospun Nanofibers for Energy and Environmental Applications

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Lithium-ion battery technology has become very imperative in recent years as these batteries show great promise as power sources in portable electric appliances and vehicles. The development of new materials for lithium-ion batteries is the focus of research in prominent groups in the field of materials science throughout the world. On the other hand, electrospinning is appealing attracting close attention as a versatile fabrication method for one-dimensional organic, inorganic, and hybrid nanomaterials of controlled dimensions as random or oriented continuous nanofibers. The controllable dimensions and compositional flexibility of electrospun nanofibers are increasingly being investigated for the targeted development of electrodes and electrolyte materials in energy conversion and storage devices. We present here a review on the application of electrospinning for the design and fabrication of architectured, nanofibrous materials for electrodes of lithium-ion batteries with particular emphasis on improved energy and power density imparted by performance improvement via better ionic conductivity, cyclability, reversibility, and electrochemical stability of electrospun electrode for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohzuku T, Brodd RJ (2007) An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 174(2):449–456. doi:10.1016/j.jpowsour.2007.06.154

    Article  Google Scholar 

  2. Mengeritsky E, Dan P, Weissman I, Zaban A, Aurbach D (1996) Safety and performance of Tadiran TLR-7103 rechargeable batteries. J Electrochem Soc 143(7):2110–2116. doi:10.1149/1.1836967

    Article  Google Scholar 

  3. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x < -1): a new cathode material for batteries of high energy density. Mater Res Bull 15(6):783–789, doi: http://dx.doi.org/10.1016/0025-5408(80)90012-4

    Article  Google Scholar 

  4. Lazzari M, Scrosati B (1980) A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J Electrochem Soc 127(3):773–774. doi:10.1149/1.2129753

    Article  Google Scholar 

  5. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energ Environ Sci 4(9):3243–3262. doi:10.1039/c1ee01598b

    Article  Google Scholar 

  6. Choi HC, Jung YM, Noda I, Kim SB (2003) A study of the mechanism of the electrochemical reaction of lithium with CoO by two-dimensional soft X-ray absorption spectroscopy (2D XAS), 2D Raman, and 2D heterospectral XAS-Raman correlation analysis. J Phys Chem B 107(24):5806–5811. doi:10.1021/jp030438w

    Article  Google Scholar 

  7. Amatucci GG, Tarascon JM, Klein LC (1996) CoO2, the end member of the LixCoO2 solid solution. J Electrochem Soc 143(3):1114–1123. doi:10.1149/1.1836594

    Article  Google Scholar 

  8. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269. doi:10.1021/cr020730k

    Article  Google Scholar 

  9. Cabana J, Monconduit L, Larcher D, Rosa Palacin M (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192. doi:10.1002/adma.201000717

    Article  Google Scholar 

  10. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946. doi:10.1002/anie.200702505

    Article  Google Scholar 

  11. Shukla AK, Kumar TP (2008) Materials for next-generation lithium batteries. Curr Sci 94(3):314–331

    Google Scholar 

  12. Hua Kun L, Guo Xiu W, Zaiping G, Jiazhao W, Konstantinov K (2006) Nanomaterials for lithium-ion rechargeable batteries. J Nanosci Nanotechnol 6(1):1–15. doi:10.1166/jnn.2006.103

    Article  Google Scholar 

  13. Chen X, Li C, Graetzel M, Kostecki R, Mao SS (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41(23):7909–7937. doi:10.1039/c2cs35230c

    Article  Google Scholar 

  14. Cheng F, Chen J (2013) Nanoporous catalysts for rechargeable Li-air batteries. Acta Chim Sinica 71(4):473–477. doi:10.6023/a13010098

    Article  Google Scholar 

  15. Ding B, Lin J, Wang X, Yu J, Yang J, Cai Y (2011) Investigation of silica nanoparticle distribution in nanoporous polystyrene fibers. Soft Matter 7(18):8376–8383. doi:10.1039/c1sm05791j

    Article  Google Scholar 

  16. Ding B, Ogawa T, Kim J, Fujimoto K, Shiratori S (2008) Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid Films 516(9):2495–2501. doi:10.1016/j.tsf.2007.04.086

    Article  Google Scholar 

  17. Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27. doi:10.1016/S1369-7021(10)70200-5

    Article  Google Scholar 

  18. Hu J, Wang X, Ding B, Lin J, Yu J, Sun G (2011) One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net. Macromol Rapid Commun 32(21):1729–1734. doi:10.1002/marc.201100343

    Article  Google Scholar 

  19. Lin J, Ding B, Yang J, Yu J, Sun G (2012) Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale 4(1):176–182. doi:10.1039/c1nr10895f

    Article  Google Scholar 

  20. Yang S, Wang X, Ding B, Yu J, Qian J, Sun G (2011) Controllable fabrication of soap-bubble-like structured polyacrylic acid nano-nets via electro-netting. Nanoscale 3(2):564–568. doi:10.1039/c0nr00730g

    Article  Google Scholar 

  21. Wang X, Ding B, Sun G, Wang M, Yu J (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58(8):1173–1243, doi: http://dx.doi.org/10.1016/j.pmatsci.2013.05.001

    Article  Google Scholar 

  22. Lin J, Wang X, Ding B, Yu J, Sun G, Wang M (2012) Biomimicry via electrospinning. Crit Rev Solid State 37(2):94–114. doi:10.1080/10408436.2011.627096

    Google Scholar 

  23. Wang X, Ding B, Yu J, Wang M (2011) Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 6(5):510–530. doi:10.1016/j.nantod.2011.08.004

    Article  Google Scholar 

  24. Li D, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170. doi:10.1002/adma.200400719

    Article  Google Scholar 

  25. Kumar PR, Khan N, Vivekanandhan S, Satyanarayana N, Mohanty AK, Misra M (2012) Nanofibers: effective generation by electrospinning and their applications. J Nanosci Nanotechnol 12(1):1–25. doi:10.1166/jnn.2012.5111

    Article  Google Scholar 

  26. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50. doi:10.1016/s1369-7021(06)71389-x

    Article  Google Scholar 

  27. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energ Environ Sci 1(2):205–221. doi:10.1039/b809074m

    Article  Google Scholar 

  28. Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol 22(3):326–338. doi:10.1002/pat.1839

    Article  Google Scholar 

  29. Miao J, Miyauchi M, Simmons TJ, Dordick JS, Linhardt RJ (2010) Electrospinning of nanomaterials and applications in electronic components and devices. J Nanosci Nanotechnol 10(9):5507–5519. doi:10.1166/jnn.2010.3073

    Article  Google Scholar 

  30. Dong Z, Kennedy SJ, Wu Y (2011) Electrospinning materials for energy-related applications and devices. J Power Sources 196(11):4886–4904. doi:10.1016/j.jpowsour.2011.01.090

    Article  Google Scholar 

  31. Dong S, Chen X, Zhang X, Cui G (2013) Nanostructured transition metal nitrides for energy storage and fuel cells. Coord Chem Rev 257(13–14):1946–1956. doi:10.1016/j.ccr.2012.12.012

    Article  Google Scholar 

  32. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127–3171. doi:10.1039/c3cs00009e

    Article  Google Scholar 

  33. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887. doi:10.1002/adma.200800627

    Article  Google Scholar 

  34. Manthiram A, Murugan AV, Sarkar A, Muraliganth T (2008) Nanostructured electrode materials for electrochemical energy storage and conversion. Energ Environ Sci 1(6):621–638. doi:10.1039/b811802g

    Article  Google Scholar 

  35. Chan K, Kap Seung Y, Kojitna M, Yoshida K, Yong Jung K, Yoong Ahm K, Endo M (2006) Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater 16(18):2393–2397. doi:10.1002/adfm.200500911

    Article  Google Scholar 

  36. Choi HS, Lee JG, Lee HY, Kim SW, Park CR (2010) Effects of surrounding confinements of Si NPs on Si-based anode performance for lithium ion batteries. Electrochim Acta 56(2):790–796. doi:10.1016/j.electacta.2010.09.101

    Article  Google Scholar 

  37. Liu Z, Tay SW (2012) Direct growth Fe2O3 nanorods on carbon fibers as anode materials for lithium ion batteries. Mater Lett 72:74–77. doi:10.1016/j.matlet.2011.12.083

    Article  Google Scholar 

  38. Zhu P, Wu Y, Reddy MV, Nair AS, Chowdari BVR, Ramakrishna S (2012) Long term cycling studies of electrospun TiO2 nanostructures and their composites with MWCNTs for rechargeable Li-ion batteries. RSC Adv 2(2):531–537. doi:10.1039/c1ra00514f

    Article  Google Scholar 

  39. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett 10(11):4750–4755. doi:10.1021/nl103343w

    Article  Google Scholar 

  40. Ban C, Chernova NA, Whittingham MS (2009) Electrospun nano-vanadium pentoxide cathode. Electrochem Commun 11(3):522–525. doi:10.1016/j.elecom.2008.11.051

    Article  Google Scholar 

  41. Gu Y, Jian F (2008) Hollow LiNi0.8Co0.1Mn0.1O2-MgO coaxial fibers: sol-gel method combined with co-electrospun preparation and electrochemical properties. J Phys Chem C 112(51):20176–20180. doi:10.1021/jp808468x

    Article  Google Scholar 

  42. Gu Y, Chen D, Jiao X, Liu F (2007) LiCoO2-MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties. J Mater Chem 17(18):1769–1776. doi:10.1039/b614205b

    Article  Google Scholar 

  43. Hosono E, Wang Y, Kida N, Enomoto M, Kojima N, Okubo M, Matsuda H, Saito Y, Kudo T, Honma I, Zhou H (2010) Synthesis of Triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. ACS Appl Mater Interfaces 2(1):212–218. doi:10.1021/am900656y

    Article  Google Scholar 

  44. Ji L, Yao Y, Toprakci O, Lin Z, Liang Y, Shi Q, Medford AJ, Millns CR, Zhang X (2010) Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J Power Sources 195(7):2050–2056. doi:10.1016/j.jpowsour.2009.10.021

    Article  Google Scholar 

  45. Zou L, Gan L, Kang F, Wang M, Shen W, Huang Z (2010) Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries. J Power Sources 195(4):1216–1220. doi:10.1016/j.jpowsour.2009.08.052

    Article  Google Scholar 

  46. Wang L, Ding CX, Zhang LC, Xu HW, Zhang DW, Cheng T, Chen CH (2010) A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J Power Sources 195(15):5052–5056. doi:10.1016/j.jpowsour.2010.01.088

    Article  Google Scholar 

  47. Li Y, Guo B, Ji L, Lin Z, Xu G, Liang Y, Zhang S, Toprakci O, Hu Y, Alcoutlabi M, Zhang X (2013) Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon NPs for energy storage. Carbon 51:185–194. doi:10.1016/j.carbon.2012.08.027

    Article  Google Scholar 

  48. Nan D, Wang JG, Huang ZH, Wang L, Shen W, Kang F (2013) Highly porous carbon nanofibers from electrospun polyimide/SiO2 hybrids as an improved anode for lithium-ion batteries. Electrochem Commun 34:52–55, doi: http://dx.doi.org/10.1016/j.elecom.2013.05.010

    Article  Google Scholar 

  49. Yu Y, Yang Q, Teng D, Yang X, Ryu S (2010) Reticular Sn nanoparticle-dispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries. Electrochem Commun 12(9):1187–1190. doi:10.1016/j.elecom.2010.06.015

    Article  Google Scholar 

  50. Zhang P, Guo ZP, Huang Y, Jia D, Liu HK (2011) Synthesis of Co3O4/Carbon composite nanowires and their electrochemical properties. J Power Sources 196(16):6987–6991. doi:10.1016/j.jpowsour.2010.10.090

    Article  Google Scholar 

  51. Lin Z, Ji L, Woodroof MD, Zhang X (2010) Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. J Power Sources 195(15):5025–5031. doi:10.1016/j.jpowsour.2010.02.004

    Article  Google Scholar 

  52. Ji L, Lin Z, Guo B, Medford AJ, Zhang X (2010) Assembly of carbon-SnO2 core-sheath composite nanofibers for superior lithium storage. Chem Eur J 16(38):11543–11548. doi:10.1002/chem.201001564

    Article  Google Scholar 

  53. Zou L, Gan L, Lv R, Wang M, Huang Z, Kang F, Shen W (2011) A film of porous carbon nanofibers that contain Sn/SnOx nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries. Carbon 49(1):89–95. doi:10.1016/j.carbon.2010.08.046

    Article  Google Scholar 

  54. Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete ML, Croce F (2013) High-performance Sn@carbon nanocomposite anode for lithium batteries. J Power Sources 226:241–248. doi:10.1016/j.jpowsour.2012.11.004

    Article  Google Scholar 

  55. Bonino CA, Ji L, Lin Z, Toprakci O, Zhang X, Khan SA (2011) Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. ACS Appl Mater Interfaces 3(7):2534–2542. doi:10.1021/am2004015

    Article  Google Scholar 

  56. Kong J, Liu Z, Yang Z, Tan HR, Xiong S, Wong SY, Li X, Lu X (2012) Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity. Nanoscale 4(2):525–530. doi:10.1039/c1nr10962f

    Article  Google Scholar 

  57. Ji L, Toprakci O, Alcoutlabi M, Yao Y, Li Y, Zhang S, Guo B, Lin Z, Zhang X (2012) alpha-Fe2O3 Nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ACS Appl Mater Interfaces 4(5):2672–2679. doi:10.1021/am300333s

    Article  Google Scholar 

  58. Yang Z, Du G, Meng Q, Guo Z, Yu X, Chen Z, Guo T, Zeng R (2012) Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J Mater Chem 22(12):5848–5854. doi:10.1039/c2jm14852h

    Article  Google Scholar 

  59. Ji L, Lin Z, Medford AJ, Zhang X (2009) In-situ encapsulation of nickel particles in electrospun carbon nanofibers and the resultant electrochemical performance. Chem Eur J 15(41):10718–10722. doi:10.1002/chem.200902012

    Article  Google Scholar 

  60. Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energ Environ Sci 2(8):818–837. doi:10.1039/b823474d

    Article  Google Scholar 

  61. Yang Z, Du G, Feng C, Li S, Chen Z, Zhang P, Guo Z, Yu X, Chen G, Huang S, Liu H (2010) Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries. Electrochim Acta 55(19):5485–5491. doi:10.1016/j.electacta.2010.04.045

    Article  Google Scholar 

  62. Li L, Yin X, Liu S, Wang Y, Chen L, Wang T (2010) Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem Commun 12(10):1383–1386. doi:10.1016/j.elecom.2010.07.026

    Article  Google Scholar 

  63. Li L, Peng S, Cheah YL, Wang J, Teh P, Ko Y, Wong C, Srinivasan M (2013) Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance. Nanoscale 5(1):134–138. doi:10.1039/c2nr32766j

    Article  Google Scholar 

  64. Feng N, Qiao L, Hu D, Sun X, Wang P, He D (2013) Synthesis, characterization, and lithium-storage of ZnO-SnO2 hierarchical architectures. RSC Adv 3(21):7758–7764. doi:10.1039/c3ra40229k

    Article  Google Scholar 

  65. Lu HW, Zeng W, Li YS, Fu ZW (2007) Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. J Power Sources 164(2):874–879. doi:10.1016/j.jpowsour.2006.11.009

    Article  Google Scholar 

  66. Nam SH, Shim HS, Kim YS, Dar MA, Kim JG, Kim WB (2010) Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl Mater Interfaces 2(7):2046–2052. doi:10.1021/am100319u

    Article  Google Scholar 

  67. Fehse M, Cavaliere S, Lippens PE, Savych I, Iadecola A, Monconduit L, Jones DJ, Rozière J, Fischer F, Tessier C, Stievano L (2013) Nb-Doped TiO2 nanofibers for lithium ion batteries. J Phys Chem C 117(27):13827–13835. doi:10.1021/jp402498p

    Article  Google Scholar 

  68. Chaudhari S, Srinivasan M (2012) 1D hollow alpha-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J Mater Chem 22(43):23049–23056. doi:10.1039/c2jm32989a

    Article  Google Scholar 

  69. Teh PF, Sharma Y, Pramana SS, Srinivasan M (2011) Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J Mater Chem 21(38):14999–15008. doi:10.1039/c1jm12088c

    Article  Google Scholar 

  70. Ding Y, Zhang P, Long Z, Jiang Y, Huang J, Yan W, Liu G (2008) Synthesis and electrochemical properties of Co3O4 nanofibers as anode materials for lithium-ion batteries. Mater Lett 62(19):3410–3412. doi:10.1016/j.matlet.2008.03.033

    Article  Google Scholar 

  71. Sun YK, Oh IH, Hong SA (1996) Synthesis of ultrafine LiCoO2 powders by the sol-gel method. J Mater Sci 31(14):3617–3621. doi:10.1007/bf00352769

    Article  Google Scholar 

  72. Chen LJ, Liao JD, Chuang YJ, Hsu KC, Chiang YF, Fu YS (2011) Synthesis and characterization of PVP/LiCoO2 nanofibers by electrospinning route. J Appl Polym Sci 121(1):154–160. doi:10.1002/app.33499

    Article  Google Scholar 

  73. Gu YX, Chen DR, Jiao ML (2005) Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. J Phys Chem B 109(38):17901–17906. doi:10.1021/jp0521813

    Article  Google Scholar 

  74. Yang Z, Cao C, Liu F, Chen D, Jiao X (2010) Core-shell Li(Ni1/3Co1/3Mn1/3)O-2/Li(Ni1/2Mn1/2)O2 fibers: synthesis, characterization and electrochemical properties. Solid State Ion 181(15–16):678–683. doi:10.1016/j.ssi.2010.03.032

    Article  Google Scholar 

  75. Lu HW, Yu L, Zeng W, Li YS, Fu ZW (2008) Fabrication and electrochemical properties of three-dimensional structure of LiCoO2 fibers. Electrochem Solid State 11(8):A140–A144. doi:10.1149/1.2932054

    Article  Google Scholar 

  76. Gabrisch H, Wilcox JD, Doeff MM (2006) Carbon surface layers on a high-rate LiFePO4. Electrochem Solid State 9(7):A360–A363. doi:10.1149/1.2203309

    Article  Google Scholar 

  77. Sisbandini C, Brandell D, Gustafsson T, Nyholm L (2009) The mechanism of capacity enhancement in LiFePO4 cathodes through polyetheramine coating. J Electrochem Soc 156(9):A720–A725. doi:10.1149/1.3155451

    Article  Google Scholar 

  78. Zhu C, Yu Y, Gu L, Weichert K, Maier J (2011) electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew Chem Int Ed 50(28):6278–6282. doi:10.1002/anie.201005428

    Article  Google Scholar 

  79. Von Hagen R, Lepcha A, Song X, Tyrra W, Mathur S (2013) Influence of electrode design on the electrochemical performance of Li3V2(PO4)3/C nanocomposite cathode in lithium ion batteries. Nano Energ 2(2):304–313. doi:10.1016/j.nanoen.2012.10.002

    Article  Google Scholar 

  80. Cheah YL, Gupta N, Pramana SS, Aravindan V, Wee G, Srinivasan M (2011) Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J Power Sources 196(15):6465–6472. doi:10.1016/j.jpowsour.2011.03.039

    Article  Google Scholar 

  81. Cheah YL, Aravindan V, Madhavi S (2012) Improved elevated temperature performance of Al-Intercalated V2O5 electrospun nanofibers for lithium-ion batteries. ACS Appl Mater Interfaces 4(6):3270–3277. doi:10.1021/am300616k

    Article  Google Scholar 

  82. Le Viet A, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S (2010) Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C 114(1):664–671. doi:10.1021/jp9088589

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (973 Program, 2011CB606103 and 2012CB525005), the National Natural Science Foundation of China (No. 51173022, U1232116, and 51273038), the Shanghai Nano Special Projects (11 nm0502900), the Shanghai Committee of Science and Technology (No. 12JC1400101), the Huo Yingdong Foundation (131070), and the Program for New Century Talents of the University in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raza, A., Yu, J., Zhai, Y., Sun, G., Ding, B. (2014). Applications of Electrospinning in Design and Fabrication of Electrodes for Lithium-Ion Batteries. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_3

Download citation

Publish with us

Policies and ethics