Skip to main content

Adsorbents Based on Electrospun Nanofibers

  • Chapter
  • First Online:
Electrospun Nanofibers for Energy and Environmental Applications

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In the past few decades, removing or controlling the concentration levels of the pollutants including toxic gases, heavy metal ions, and organic contaminants in environmental systems has attracted tremendous attention. Among the numerous approaches, adsorption is considered to be one of the most versatile and promising approach in removing pollutants due to its convenience, ease of operation, simplicity of design, and universal in use. Electrospun nanofibers have unique properties such as large surface area, tailored pore structure, high porosity, and flexibility of surface functionalization, therefore could be used as advanced adsorbents for contaminant removal. Importantly, nanofiber-based adsorbents are expected to possess strong adsorption capacity, fast kinetics, and good reproducibility due to the unique structure of nanofibers. In this chapter, we summarize recent progress in the development of electrospun nanofibrous membrane-based adsorbent for the removal of toxic gases and pollutants in aqueous solution (heavy metal ions and organic contaminants), describe the design of the nanofibrous materials, and discuss their adsorption performance in detail. This chapter might trigger further development and evolution of adsorption based on electrospun nanofibers as one potential to ease the environmental pollution problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760. doi:10.1126/science.1150195

    Article  Google Scholar 

  2. Jones AP (1999) Indoor air quality and health. Atmos Environ 33(28):4535–4564. doi:10.1016/s1352-2310(99)00272-1

    Article  Google Scholar 

  3. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dye Pigment 58(3):179–196. doi:10.1016/s0143-7208(03)00064-0

    Article  Google Scholar 

  4. Harada M (1995) Minamata disease-methylmercury poisoning in Japan caused by environmental-pollution. Crit Rev Toxicol 25(1):1–24. doi:10.3109/10408449509089885

    Article  Google Scholar 

  5. Landrigan PJ, Schechter CB, Lipton JM, Fahs MC, Schwartz J (2002) Environmental pollutants and disease in American children: estimates of morbidity, mortality, and costs for lead poisoning, asthma, cancer, and developmental disabilities. Environ Health Perspect 110(7):721–728. doi:10.1289/ehp.02110721

    Article  Google Scholar 

  6. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interf Sci 276(1):47–52. doi:10.1016/j.jcis.2004.03.048

    Article  Google Scholar 

  7. Chen GH (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41. doi:10.1016/j.seppur.2003.10.006

    Article  Google Scholar 

  8. Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment a review. Crit Rev Environ Sci Technol 39(10):783–842. doi:10.1080/10643380801977610

    Article  Google Scholar 

  9. Chen W, Duan L, Zhu DQ (2007) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41(24):8295–8300. doi:10.1021/es071230h

    Article  Google Scholar 

  10. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ Sci Pollut Res Int 20(5):2828–2843. doi:10.1007/s11356-013-1524-1

    Article  Google Scholar 

  11. Dettmer K, Engewald W (2002) Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. Anal Bioanal Chem 373(6):490–500. doi:10.1007/s00216-002-1352-5

    Article  Google Scholar 

  12. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30(7):953–971. doi:10.1016/j.envint.2004.02.001

    Article  Google Scholar 

  13. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38(5):1477–1504. doi:10.1039/b802426j

    Article  Google Scholar 

  14. Meng LY, Park SJ (2012) MgO-templated porous carbons-based CO2 adsorbents produced by KOH activation. Mater Chem Phys 137(1):91–96. doi:10.1016/j.matchemphys.2012.08.043

    Article  Google Scholar 

  15. Aluigi A, Tonetti C, Vineis C, Tonin C, Mazzuchetti G (2011) Adsorption of copper(II) ions by keratin/PA6 blend nanofibres. Eur Polym J 47(9):1756–1764. doi:10.1016/j.eurpolymj.2011.06.009

    Article  Google Scholar 

  16. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231. doi:10.1016/j.seppur.2006.12.006

    Article  Google Scholar 

  17. Kizzie AC, Wong-Foy AG, Matzger AJ (2011) Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 27(10):6368–6373. doi:10.1021/la200547k

    Article  Google Scholar 

  18. Werner MD (1985) The effects of relative-humidity on the vapor-phase adsorption of trichlorethylene by activated carbon. Am Ind Hyg Assoc J 46(10):585–590. doi:10.1202/0002-8894(1985)046<0585:teorho>2.3.co;2

    Article  Google Scholar 

  19. Zhang LD, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(2):128–142. doi:10.1016/j.nantod.2010.03.002

    Article  Google Scholar 

  20. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energ Environ Sci 5(8):8075–8109. doi:10.1039/c2ee21818f

    Article  Google Scholar 

  21. Ma HY, Hsiao BS, Chu B (2013) Electrospun nanofibrous membrane for heavy metal ion adsorption. Curr Org Chem 17(13):1361–1370

    Article  Google Scholar 

  22. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. doi:10.1016/s0266-3538(03)00178-7

    Article  Google Scholar 

  23. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma ZW, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50. doi:10.1016/s1369-7021(06)71389-x

    Article  Google Scholar 

  24. Li D, McCann JT, Xia YN (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89(6):1861–1869. doi:10.1111/j.1551-2916.2006.00989.x

    Article  Google Scholar 

  25. Kyung L, Shiratori N, Gang L, Miyawaki J, Mochida I, Seong Y, Jyongsik J (2010) Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon 48(15):4248–4255. doi:10.1016/j.carbon.2010.07.034

    Article  Google Scholar 

  26. Shim WG, Kim C, Lee JW, Yun JJ, Jeong YI, Moon H, Yang KS (2006) Adsorption characteristics of benzene on electrospun-derived porous carbon nanofibers. J Appl Polym Sci 102(3):2454–2462. doi:10.1002/app.24554

    Article  Google Scholar 

  27. Song XF, Wang C, Zhang DJ (2009) Surface structure and adsorption properties of ultrafine porous carbon fibers. Appl Surf Sci 255(7):4159–4163. doi:10.1016/j.apsusc.2008.10.113

    Article  Google Scholar 

  28. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS (2008) The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interf Sci 318(1):42–49. doi:10.1016/j.jcis.10.024

    Article  Google Scholar 

  29. Mahanta N, Valiyaveettil S (2013) Functionalized poly(vinyl alcohol) based nanofibers for the removal of arsenic from water. RSC Adv 3(8):2776–2783. doi:10.1039/c2ra22768a

    Article  Google Scholar 

  30. Saeed K, Haider S, Oh TJ, Park SY (2008) Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Membr Sci 322(2):400–405, doi: http://dx.doi.org/10.1016/j.memsci.2008.05.062

    Article  Google Scholar 

  31. Choi J, Ide A, Truong YB, Kyratzis IL, Caruso RA (2013) High surface area mesoporous titanium-zirconium oxide nanofibrous web: a heavy metal ion adsorbent. J Mater Chem A 1(19):5847–5853. doi:10.1039/c3ta00030c

    Article  Google Scholar 

  32. Wu Y, Li F, Wu Y, Jia W, Hannam P, Qiao J, Li G (2011) Formation of silica nanofibers with hierarchical structure via electrospinning. Colloid Polym Sci 289(11):1253–1260. doi:10.1007/s00396-011-2455-3

    Article  Google Scholar 

  33. Vu D, Li Z, Zhang H, Wang W, Wang Z, Xu X, Dong B, Wang C (2012) Adsorption of Cu(II) from aqueous solution by anatase mesoporous TiO2 nanofibers prepared via electrospinning. J Colloid Interf Sci 367:429–435. doi:10.1016/j.jcis.2011.09.088

    Article  Google Scholar 

  34. Wu S, Li F, Wu Y, Xu R, Li G (2010) Preparation of novel poly(vinyl alcohol)/SiO2 composite nanofiber membranes with mesostructure and their application for removal of Cu2+ from waste water. Chem Commun 46(10):1694–1696. doi:10.1039/b925296g

    Article  Google Scholar 

  35. Huang F, Xu Y, Liao S, Yang D, Hsieh YL, Wei Q (2013) Preparation of amidoxime polyacrylonitrile chelating nanofibers and their application for adsorption of metal ions. Materials 6(3):969–980. doi:10.3390/ma6030969

    Article  Google Scholar 

  36. Taha AA, Qiao J, Li F, Zhang B (2012) Preparation and application of amino functionalized mesoporous nanofiber membrane via electrospinning for adsorption of Cr3+ from aqueous solution. J Environ Sci 24(4):610–616, doi: http://dx.doi.org/10.1016/S1001-0742(11)60806-1

    Article  Google Scholar 

  37. Mahapatra A, Mishra BG, Hota G (2013) Studies on electrospun alumina nanofibers for the removal of chromium(VI) and fluoride toxic ions from an aqueous system. Ind Eng Chem Res 52(4):1554–1561. doi:10.1021/ie301586j

    Article  Google Scholar 

  38. Teng M, Wang H, Li F, Zhang B (2011) Thioether-functionalized mesoporous fiber membranes: sol-gel combined electrospun fabrication and their applications for Hg2+ removal. J Colloid Interf Sci 355(1):23–28. doi:10.1016/j.jcis.2010.11.008

    Article  Google Scholar 

  39. Li S, Yue X, Jing Y, Bai S, Dai Z (2011) Fabrication of zonal thiol-functionalized silica nanofibers for removal of heavy metal ions from wastewater. Colloid Surf A 380(1–3):229–233, doi: http://dx.doi.org/10.1016/j.colsurfa.2011.02.027

    Article  Google Scholar 

  40. Mahapatra A, Mishra BG, Hota G (2013) Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J Hazard Mater 258–259:116–123. doi:10.1016/j.jhazmat.2013.04.045

    Article  Google Scholar 

  41. Mahanta N, Valiyaveettil S (2011) Surface modified electrospun poly(vinyl alcohol) membranes for extracting nanoparticles from water. Nanoscale 3(11):4625–4631. doi:10.1039/c1nr10739a

    Article  Google Scholar 

  42. Aliabadi M, Irani M, Ismaeili J, Piri H, Parnian MJ (2013) Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem Eng J 220:237–243, doi: http://dx.doi.org/10.1016/j.cej.2013.01.021

    Article  Google Scholar 

  43. Qiao JL, Li FT, Bera PK (2012) Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules. Carbon 50(8):2877–2886. doi:10.1016/j.carbon.2012.02.056

    Article  Google Scholar 

  44. Teng M, Li FT, Zhang BR, Taha AA (2011) Electrospun cyclodextrin-functionalized mesoporous polyvinyl alcohol/SiO2 nanofiber membranes as a highly efficient adsorbent for indigo carmine dye. Colloid Surf A 385(1–3):229–234. doi:10.1016/j.colsurfa.2011.06.020

    Article  Google Scholar 

  45. Xu R, Jia M, Li F, Wang H, Zhang B, Qiao J (2012) Preparation of mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye. Appl Phys A-Mater 106(3):747–755. doi:10.1007/s00339-011-6697-1

    Article  Google Scholar 

  46. Zhang HT, Yu DG, Wu CY, Zhang YL, Christopher J, Branford W (2010) Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption. Desalination 256:141–147. doi:10.1016/j.desal.2010.01.026

    Article  Google Scholar 

  47. Fierro V, Zhao W, Izquierdo MT, Aylon E, Celzard A (2010) Adsorption and compression contributions to hydrogen storage in activated anthracites. Int J Hydrog Energ 35(17):9038–9045. doi:10.1016/j.ijhydene.2010.06.004

    Article  Google Scholar 

  48. Cuervo MR, Asedegbega E, Diaz E, Vega A, Ordonez S, Castillejos E, Rodriguez-Ramos I (2008) Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds. J Chromatogr A 1188(2):264–273. doi:10.1016/j.chroma.2008.02.061

    Article  Google Scholar 

  49. Takagi H, Hatori H, Yamada Y (2005) Reversible adsorption/desorption property of hydrogen on carbon surface. Carbon 43(14):3037–3039. doi:10.1016/j.carbon.2005.06.032

    Article  Google Scholar 

  50. Lunde PJ, Kester FL (1975) Chemical and physical gas adsorption in finite multimolecular layers. Chem Eng Sci 30(12):1497–1505. doi:10.1016/0009-2509(75)85027-5

    Article  Google Scholar 

  51. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. doi:10.1021/ja01269a023

    Article  Google Scholar 

  52. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619. doi:10.1351/pac198557040603

    Article  Google Scholar 

  53. Li ZJ, Kruk M, Jaroniec M, Ryu SK (1998) Characterization of structural and surface properties of activated carbon fibers. J Colloid Interf Sci 204(1):151–156. doi:10.1006/jcis.1998.5515

    Article  Google Scholar 

  54. Im JS, Kang SC, Lee SH, Lee YS (2010) Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification. Carbon 48(9):2573–2581. doi:10.1016/j.carbon.2010.03.045

    Article  Google Scholar 

  55. Hong SE, Kim DK, Jo SM, Kim DY, Chin BD, Lee DW (2007) Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity. Catal Today 120(3–4):413–419. doi:10.1016/j.cattod.2006.09.013

    Article  Google Scholar 

  56. Bogdanovic B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloy Compd 253:1–9. doi:10.1016/s0925-8388(96)03049-6

    Article  Google Scholar 

  57. Katepalli H, Bikshapathi M, Sharma CS, Verma N, Sharma A (2011) Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chem Eng J 171(3):1194–1200. doi:10.1016/j.cej.2011.05.025

    Article  Google Scholar 

  58. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753. doi:10.1016/j.envint.2005.02.003

    Article  Google Scholar 

  59. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1–3):219–243. doi:10.1016/s0304-3894(02)00263-7

    Article  Google Scholar 

  60. Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharm 144(2):247–261. doi:10.1006/taap.1997.8125

    Article  Google Scholar 

  61. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479. doi:10.1016/s0043-1354(98)00475-8

    Article  Google Scholar 

  62. Li S, Yue X, Jing Y, Bai S, Dai Z (2011) Fabrication of zonal thiol-functionalized silica nanofibers for removal of heavy metal ions from wastewater. Colloid Surf A 380(1–3):229–233. doi:10.1016/j.colsurfa.2011.02.027

    Article  Google Scholar 

  63. Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev. doi:10.1021/cr400086v

    Google Scholar 

  64. Doo Hyun B, Chang Seok K, In Chul U, Young Hwan P (2007) Metal ion adsorbability of electrospun wool keratose/silk fibroin blend nanofiber mats. Fiber Polym 8(3):271–277. doi:10.1007/bf02877269

    Article  Google Scholar 

  65. Zhou W, He J, Cui S, Gao W (2011) Preparation of electrospun silk fibroin/cellulose acetate blend nanofibers and their applications to heavy metal ions adsorption. Fiber Polym 12(4):431–437. doi:10.1007/s12221-011-0431-7

    Article  Google Scholar 

  66. Zhou W, He J, Cui S, Gao W (2011) Nanofibrous membrane of silk fibroin/cellulose acetate blend for heavy metal ion adsorption. In: Liu XH, Jiang ZY, Han JT (eds) Manufacturing processes and systems, Pts 1-2, vol 148–149. Advanced Materials Research, pp 1431–1435. doi:10.4028/www.scientific.net/AMR.148-149.1431

  67. Darko G, Sobola A, Adewuyi S, Okonkwo JO, Torto N (2012) Pre-concentration of toxic metals using electrospun amino-functionalized nylon-6 nanofibre sorbent. S Afr J Chem-S Afr T 65:14–22

    Google Scholar 

  68. Tian Y, Wu M, Liu R, Li Y, Wang D, Tan J, Wu R, Huang Y (2011) Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohyd Polym 83(2):743–748. doi:10.1016/j.carbpol.2010.08.054

    Article  Google Scholar 

  69. Ki CS, Gang EH, Um NC, Park YH (2007) Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Membr Sci 302(1–2):20–26. doi:10.1016/j.memsci.2007.06.003

    Article  Google Scholar 

  70. Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328(1–2):90–96. doi:10.1016/j.memsci.2008.11.046

    Article  Google Scholar 

  71. Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2–3):616–645. doi:10.1016/j.jhazmat.2008.06.042

    Article  Google Scholar 

  72. Wu S, Li F, Wang H, Fu L, Zhang B, Li G (2010) Effects of poly (vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 51(26):6203–6211. doi:10.1016/j.polymer.2010.10.015

    Article  Google Scholar 

  73. Stephen M, Catherine N, Brenda M, Andrew K, Leslie P, Corrine G (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192(2):922–927. doi:10.1016/j.jhazmat.2011.06.001

    Article  Google Scholar 

  74. Appel J (1973) Freundlich’s adsorption isotherm. Surf Sci 39(1):237–244, doi: http://dx.doi.org/10.1016/0039-6028(73)90105-2

    Article  Google Scholar 

  75. Wu Y, Zhang B, Li F, Zhu W, Xu D, Hannam P, Li G (2012) Electrospun fibrous mats as a skeleton for fabricating hierarchically structured materials as sorbents for Cu2+. J Mater Chem 22(11):5089–5097. doi:10.1039/c2jm13874c

    Article  Google Scholar 

  76. Xu R, Jia M, Zhang Y, Li F (2012) Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes. Micropor Mesopor Mat 149(1):111–118. doi:10.1016/j.micromeso.2011.08.024

    Article  Google Scholar 

  77. Heidari A, Younesi H, Mehraban Z, Heikkinen H (2013) Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan–MAA nanoparticles. Int J Biol Macromol 61:251–263, doi: http://dx.doi.org/10.1016/j.ijbiomac.2013.06.032

    Article  Google Scholar 

  78. Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI) and thorium(IV) removal from aqueous solution. Chem Eng J 220:161–171. doi:10.1016/j.cej.2013.01.029

    Article  Google Scholar 

  79. Wang W, Yang Q, Sun L, Wang H, Zhang C, Fei X, Sun M, Li Y (2011) Preparation of fluorescent nanofibrous film as a sensing material and adsorbent for Cu2+ in aqueous solution via copolymerization and electrospinning. J Hazard Mater 194:185–192. doi:10.1016/j.jhazmat.2011.07.083

    Article  Google Scholar 

  80. Lin YX, Cai WP, Tian XY, Liu XL, Wang GZ, Liang CH (2011) Polyacrylonitrile/ferrous chloride composite porous nanofibers and their strong Cr-removal performance. J Mater Chem 21(4):991–997. doi:10.1039/c0jm02334e

    Article  Google Scholar 

  81. Li CJ, Li YJ, Wang JN, Cheng J (2013) PA6@FexOy nanofibrous membrane preparation and its strong Cr (VI)-removal performance. Chem Eng J 220:294–301. doi:10.1016/j.cej.2013.01.060

    Article  Google Scholar 

  82. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689. doi:10.1016/j.jhazmat.2005.12.043

    Article  Google Scholar 

  83. Ho YS (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59(1):171–177. doi:10.1023/B:SCIE.0000013305.99473.cf

    Article  Google Scholar 

  84. Vijayaraghavan K, Palanivelu K, Velan M (2006) Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour Technol 97(12):1411–1419, doi: http://dx.doi.org/10.1016/j.biortech.2005.07.001

    Article  Google Scholar 

  85. Wang F, Ge M (2013) Fibrous mat of chitosan/polyvinyl alcohol/containing cerium(III) for the removal of chromium(VI) from aqueous solution. Text Res J 83(6):628–637. doi:10.1177/0040517512454188

    Article  Google Scholar 

  86. Lin YX, Cai WP, He H, Wang XB, Wang GZ (2012) Three-dimensional hierarchically structured PAN@gamma-AlOOH fiber films based on a fiber templated hydrothermal route and their recyclable strong Cr(VI)-removal performance. RSC Adv 2(5):1769–1773. doi:10.1039/c2ra00945e

    Article  Google Scholar 

  87. Si Y, Ren T, Li Y, Ding B, Yu JY (2012) Fabrication of magnetic polybenzoxazine-based carbon nanofibers with Fe3O4 inclusions with a hierarchical porous structure for water treatment. Carbon 50(14):5176–5185. doi:10.1016/j.carbon.2012.06.059

    Article  Google Scholar 

  88. Si Y, Ren T, Ding B, Yu JY, Sun G (2012) Synthesis of mesoporous magnetic Fe3O4@carbon nanofibers utilizing in situ polymerized polybenzoxazine for water purification. J Mater Chem 22(11):4619–4622. doi:10.1039/c2jm00036a

    Article  Google Scholar 

  89. Ren T, Si Y, Yang J, Ding B, Yang X, Hong F, Yu J (2012) Polyacrylonitrile/polybenzoxazine-based Fe3O4@carbon nanofibers: hierarchical porous structure and magnetic adsorption property. J Mater Chem 22(31):15919–15927. doi:10.1039/c2jm33214k

    Article  Google Scholar 

  90. Li M, Wang H, Wu S, Li F, Zhi P (2012) Adsorption of hazardous dyes indigo carmine and acid red on nanofiber membranes. RSC Adv 2(3):900–907. doi:10.1039/c1ra00546d

    Article  Google Scholar 

  91. Miao YE, Wang R, Chen D, Liu Z, Liu T (2012) Electrospun self-standing membrane of hierarchical SiO2@gamma-AlOOH (Boehmite) core/sheath fibers for water remediation. ACS Appl Mater Interfaces 4(10):5353–5359. doi:10.1021/am3012998

    Article  Google Scholar 

  92. Yue X, Feng S, Li S, Jing Y, Shao C (2012) Bromopropyl functionalized silica nanofibers for effective removal of trace level dieldrin from water. Colloid Surf A 406:44–51. doi:10.1016/j.colsurfa.2012.04.047

    Article  Google Scholar 

  93. Xu Q, Wu SY, Wang M, Yin XY, Wen ZY, Ge WN, Gu ZZ (2010) Electrospun nylon6 nanofibrous membrane as spe adsorbent for the enrichment and determination of three estrogens in environmental water samples. Chromatographia 71(5–6):487–492. doi:10.1365/s10337-009-1453-9

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Basic Research Program of China (973 Program, 2011CB606103 and 2012CB525005), the National Natural Science Foundation of China (No. 51173022, U1232116 and 51273038), the Shanghai Nano Special Projects (11 nm0502900), the Shanghai Committee of Science and Technology (No. 12JC1400101), the Huo Yingdong Foundation (131070), and the Program for New Century Talents of the University in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, X., Ge, J., Si, Y., Ding, B. (2014). Adsorbents Based on Electrospun Nanofibers. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_19

Download citation

Publish with us

Policies and ethics