Skip to main content

Electrospun Nanofiber-Based Photocatalysts

  • Chapter
  • First Online:
Electrospun Nanofibers for Energy and Environmental Applications

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Electrospinning technique combining with the calcination process affords a simple and versatile method to generate inorganic nanostructures with well-defined compositions and structures. Additionally, the electrospun polymeric nanofibers with large surface area and porous structures provide a platform to support inorganic semiconductor nanostructures. Various kinds of inorganic nanostructured semiconductors such as titanium dioxide (TiO2), zinc oxide (ZnO), stannic oxide (SnO2), tungsten trioxide (WO3), cadmium sulfide (CdS), etc., have been proved to be good photocatalysts for many kinds of applications including decomposition of organic pollutants, hydrogen production from water splitting, photocatalytic reduction of CO2, dye-sensitized solar cells, fabricating self-cleaning surface, and antibacterial or anticancer activity. The electrospun nanofiber-based photocatalysts take the advantages of the optional design of the nanostructures (such as solid, porous, hollow, core-sheath, hierarchical fibers, etc.), thus exhibiting a high photocatalytic property. In this chapter, we present the applications of electrospun inorganic semiconductor nanofibers and the electrospun polymeric nanofibers containing semiconductor nanoparticles for photocatalysis. Within these nanostructures, the effect of the chemical composition, the size, the crystal phase, and the doping state of the semiconductors on the photocatalytic performance is widely discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38. doi:10.1038/238037a0

    Google Scholar 

  2. Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112(3):1555–1614. doi:10.1021/cr100454n

    Google Scholar 

  3. Tong H, Ouyang SX, Bi YP, Umezawa N, Oshikiri M, Ye JH (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 224(2):229–251. doi: 10.1002/adma.201102752

    Google Scholar 

  4. Zhang HJ, Chen GH, Bahnemann DW (2009) Photoelectrocatalytic materials for environmental applications. J Mater Chem 19(29):5089–5121. doi:10.1039/b821991e

    Google Scholar 

  5. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52(10):3581–3599. doi:10.1021/ie303468t

    Google Scholar 

  6. Li CJ, Xu GR (2011) Electrospinning technique in the nano-photocatalyst research. E-Polymers No. 012

    Google Scholar 

  7. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. doi:10.1016/S0266-3538(03)00178-7

    Google Scholar 

  8. Li D, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170. doi:10.1002/adma.200400719

    Google Scholar 

  9. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed 46(30):5670–5703. doi:10.1002/anie.200604646

    Google Scholar 

  10. Lu XF, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5(21):2349–2370. doi:10.1002/smll.200900445

    Google Scholar 

  11. Shao CL, Kim H, Gong J, Lee D (2002) A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor. Nanotechnology 13(5):635–637. doi:10.1088/0957-4484/13/5/319

    Google Scholar 

  12. Li D, McCann JT, Xia YN (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89(6):1861–1869. doi:10.1111/j.1551-2916.2006.00989.x

    Google Scholar 

  13. Dai YQ, Liu WY, Formo F, Sun YM, Xia YN (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol 22(3):326–338. doi:10.1002/pat.1839

    Google Scholar 

  14. Morales-Torres S, Pastrana-Martinez LM, Figueiredo JL, Faria JL (2012) Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollut Res 19(9):3676–3687. doi:10.1007/s11356-012-0939-4

    Google Scholar 

  15. Pelae M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton WJ, Byrne JA, Shea KO, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. doi:10.1016/j.apcatb.2012.05.036

    Google Scholar 

  16. Li SD, Dong YH, Guo MR (2012) Photocatalytic activity of different morphologies TiO2 nanofibers. Appl Surf Sci 258(20):8015–8019. doi:10.1016/j.apsusc.2012.04.160

    Google Scholar 

  17. Li HP, Zhang W, Li B, Pan W (2010) Diameter-dependent photocatalytic activity of electrospun TiO2 nanofiber. J Am Ceram Soc 93(9):2503–2506. doi:10.1111/j.1551-2916.2010.03841.x

    Google Scholar 

  18. Alves AK, Berutti FA, Clemens FJ, Graule T, Bergmann CP (2009) Photocatalytic activity of titania fibers obtained by electrospinning. Mater Res Bull 44(2):312–317. doi:10.1016/j.materresbull.2008.06.001

    Google Scholar 

  19. Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S (2009) Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl Mater Interface 1(5):1140–1143. doi:10.1021/am9001474

    Google Scholar 

  20. Li QM, Sun DX, Kim H (2011) Fabrication of porous TiO2 nanofiber and its photocatalytic activity. Mater Res Bull 46(11):2094–2099. doi:10.1016/j.materresbull.2011.06.034

    Google Scholar 

  21. Liu SH, Liu BS, Nakata K, Ochiai T, Murakami T, Fujishima A (2012) Electrospinning preparation and photocatalytic activity of porous TiO2 nanofibers. J Nanomater 2012:491927(1–5) doi:10.1155/2012/491927

  22. Nagamine S, Ochi S, Ohshima M (2011) Fabrication of TiO2 hollow fibers with surface nanostructure. Mater Res Bull 46(12):2328–2332. doi:10.1016/j.materresbull.2011.08.034

    Google Scholar 

  23. Zhang TZ, Ge LQ, Wang X, Gu ZZ (2008) Hollow TiO2 containing multilayer nanofibers with enhanced photocatalytic activity. Polymer 49(12):2898–2902. doi:10.1016/j.polymer.2008.04.035

    Google Scholar 

  24. Zhan SH, Chen DR, Jiao XL, Tao CH (2006) Long TiO2 hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties. J Phys Chem B 110(23):11199–11204. doi:10.1021/jp057372k

    Google Scholar 

  25. Zhang X, Thavasi V, Mhaisalkar SG, Ramakrishna S (2012) Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nanoscale 4(5):1707–1716. doi:10.1039/c2nr11251e

    Google Scholar 

  26. Lu BG, Zhu CQ, Zhang ZX, Lan W, Xie EQ (2012) Preparation of highly porous TiO2 nanotubes and their catalytic applications. J Mater Chem 22(4):1375–1379. doi:10.1039/c1jm15242d

    Google Scholar 

  27. Zhao TY, Liu ZY, Nakata K, Nishimoto S, Murakami T, Zhao Y, Jiang L, Fujishima A (2010) Multichannel TiO2 hollow fibers with enhanced photocatalytic activity. J Mater Chem 20(24):5095–5099. doi:10.1039/c0jm00484g

    Google Scholar 

  28. Liu HQ, Yang JX, Liang JH, Huang YX, Tang CY (2008) ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. J Am Ceram Soc 91(4):1287–1291. doi:10.1111/j.1551-2916.2008.02299.x

    Google Scholar 

  29. Kanjwal MA, Sheikh FA, Barakat NAM, Li XQ, Kim HY, Chronakis IS (2012) Zinc oxide’s hierarchical nanostructure and its photocatalytic properties. Appl Surf Sci 258(8):3695–3702. doi:10.1016/j.apsusc.2011.12.008

    Google Scholar 

  30. Pan C, Dong L, Qiu JS (2012) Fabrication and photocatalytic property of three-dimensional ZnO hierarchical structure. Chem J Chin Univ 33(5):1031–1035. doi:10.3969/j.issn.0251-0790.2012.05.030

    Google Scholar 

  31. Singh P, Mondal K, Sharma A (2013) Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J Colloid Interface Sci 394:208–215. doi:10.1016/j.jcis.2012.12.006

    Google Scholar 

  32. Zhu CQ, Lu BG, Su Q, Xie EQ, Lan W (2012) A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalyst. Nanoscale 4(10):3060–3064. doi:10.1039/c2nr12010k

    Google Scholar 

  33. Wang G, Lu W, Li JH, Choi J, Jeong Y, Choe SY, Park JB, Ryu MK, Lee K (2005) V-shaped tin oxide nanostructures featuring a broad photocurrent signal: an effective visible-light-driven photocatalyst. Small 2(12):1436–1439. doi:10.1002/smll.200600216

    Google Scholar 

  34. Wang C, Zhao JC, Wang XM, Mai BX, Sheng GY, Peng PA, Fu JM (2002) Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Appl Catal B 39(3):269–279. doi:10.1016/S0926-3373(02)00115-7

    Google Scholar 

  35. Xia X, Li SL, Wang X, Liu JX, Wei QF, Zhang XW (2013) Structures and properties of SnO2 nanofibers derived from two different polymer intermediates. J Mater Sci 48(9):3378–3385. doi:10.1007/s10853-012-7122-7

    Google Scholar 

  36. Wang X, Fan HQ, Ren PR (2013) Electrospinning derived hollow SnO2 microtubes with highly photocatalytic property. Catal Commun 31:37–41. doi:10.1016/j.catcom.2012.11.009

    Google Scholar 

  37. Liu Y, Yu HB, Zhan SH, Li Y, Lv ZN, Yang XQ, Yu YJ (2011) Fast degradation of methylene blue with electrospun hierarchical α-Fe2O3 nanostructured fibers. J Sol-gel Sci Technol 58(3):716–723. doi:10.1007/s10971-011-2451-6

    Google Scholar 

  38. Sundaramurthy J, Kumar PS, Kalaivani M, Thavasi V, Mhaisalkar SG, Ramakrishna S (2012) Superior photocatalytic behaviour of novel 1D nanobraid and nanoporous α-Fe2O3 structures. RSC Adv 2(21):8201–8208. doi:10.1039/c2ra20608k

    Google Scholar 

  39. Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc 123(43):10639–10649. doi:10.1021/ja011315x

    Google Scholar 

  40. Sui CH, Gong J, Cheng TX, Zhou GD, Dong SF (2011) Fabrication of tungsten oxide microfibers with photocatalytic activity by electrospinning from PVA/H3PW12O40 gel. Appl Surf Sci 257(20):8600–8604. doi:10.1016/j.apsusc.2011.05.028

    Google Scholar 

  41. Srisitthiratkul C, Yaipimai W, Intasanta V (2012) Environmental remediation and superhydrophilicity of ultrafine antibacterial tungsten oxide-based nanofibers under visible light source. Appl Surf Sci 259:349–355. doi:10.1016/j.apsusc.2012.07.050

    Google Scholar 

  42. Wang CH, Shao CL, Wang LJ, Zhang LN, Li XH, Liu YC (2009) Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. J Colloid Interface Sci 333(1):242–248. doi:10.1016/j.jcis.2008.12.077

    Google Scholar 

  43. Wang CH, Shao CL, Liu YC, Zhang LN (2009) Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scrip Mater 59(3):332–335. doi:10.1016/j.scriptamat.2008.03.038

    Google Scholar 

  44. Zhao G, Liu SW, Lu QF, Shi M, Song LJ (2011) Preparation of Bi2WO6 by electrospinning: researching their synthesis mechanism and photocatalytic activity. J Clust Sci 22(4):621–631. doi:10.1007/s10876-011-0403-5

    Google Scholar 

  45. Zhang MY, Shao CL, Zhang P, Su CY, Zhang X, Liang PP, Sun YY, Liu YC (2012) Bi2MoO6 microtubes: controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. J Hazard Mater 225:155–163. doi:10.1016/j.jhazmat.2012.05.006

    Google Scholar 

  46. Qi SH, Zuo RZ, Wang Y, Wong HL, Chan LW (2013) Synthesis and photocatalytic performance of the electrospun Bi2Fe4O9 nanofibers. J Mater Sci 48(11):4143–4150. doi:10.1007/s10853-013-7227-7

    Google Scholar 

  47. Hou DF, Luo W, Huang YH, Yu JC, Hu XL (2013) Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. Nanoscale 5(5):2028–2035. doi:10.1039/c2nr33750a

    Google Scholar 

  48. Yi X, Li JL (2010) Synthesis and optical property of NaTaO3 nanofibers prepared by electrospinning. J Sol-gel Sci Technol 53(2):480–484. doi:10.1007/s10971-009-2110-3

    Google Scholar 

  49. Qi SS, Zuo RZ, Liu Y, Wang Y (2013) Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers. Mater Res Bull 48(3):1213–1217. doi: 10.1016/j.materresbull.2012.11.074

    Google Scholar 

  50. Song LJ, Liu SW, Lu QF, Zhao G (2012) Fabrication and characterization of electrospun orthorhombic InVO4 nanofibers. Appl Surf Sci 258(8):3789–3794. doi: 10.1016/j.apsusc.2011.12.029

    Google Scholar 

  51. Sun X, Dong XT, Wang JX, Liu GX (2011) Electrospinning fabrication and photocatalytic properties of LaCrO4 and LaCrO3 nanobelts. Chem J Chin Univ 32(10):2262–2267

    Google Scholar 

  52. Li CJ, Xu GR (2011) Zn–Mn–O heterostructures: study on preparation, magnetic and photocatalytic properties. Mater Sci Eng B 176(7):552–558. doi:10.1016/j.mseb.2011.01.011

    Google Scholar 

  53. Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758. doi:10.1021/cr00035a013

    Google Scholar 

  54. Kanjwal MA, Barakat NAM, Sheikh FA, Baek W, Khil MS, Kim HY (2010) Effects of silver content and morphology on the catalytic activity of silver-grafted titanium oxide nanostructure. Fiber Polym 11(5):700–709. doi:10.1007/s12221-010-0700-x

    Google Scholar 

  55. Srisitthiratkul C, Pongsorrarith V, Intasanta N (2011) The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin. Appl Surf Sci 257(21):8850–8856. doi:10.1016/j.apsusc.2011.04.083

    Google Scholar 

  56. Park JY, Hwang KJ, Lee JW, Lee IH (2011) Fabrication and characterization of electrospun Ag doped TiO2 nanofibers for photocatalytic reaction. J Mater Sci 46(22):7240–7246. doi:10.1007/s10853-011-5683-5

    Google Scholar 

  57. Mishra S, Ahrenkiel SP (2012) Synthesis and characterization of electrospun nanocomposite TiO2 nanofibers with Ag nanoparticles for photocatalysis applications. J Nanomater 2012(90291):1–6. doi:10.1155/2012/902491

    Google Scholar 

  58. Barakat NAM, Kanjwal MA, Chronakisc IS, Kim HY (2012) Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: negative impact with the nanofibers. J Mol Catal A 366:333–340. doi:10.1016/j.molcata.2012.10.012

    Google Scholar 

  59. Su CY, Liu L, Zhang MY, Zhang Y, Shao CL (2012) Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm 14(11):3989–3999. doi:10.1039/c2ce25161b

    Google Scholar 

  60. Pan C, Dong L (2009) Fabrication of gold-doped titanium dioxide (TiO2:Au) nanofibers photocatalyst by vacuum ion sputter coating. J Macromol Sci Part B 48(5):919–926. doi:10.1080/00222340903028662

    Google Scholar 

  61. Lin DD, Wu H, Zhang R, Pan W (2009) Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers. Chem Mater 21(15):3479–3484. doi:10.1021/cm900225p

    Google Scholar 

  62. Lee SS, Bai HW, Liu ZY, Sun DD (2012) Electrospun TiO2/SnO2 nanofibers with innovative structure and chemical properties for highly efficient photocatalytic H2 generation. Int J Hydrogen Energy 37(14):10575–10584. doi:10.1016/j.ijhydene.2012.04.098

    Google Scholar 

  63. Hwang SH, Kim C, Jang J (2011) SnO2 nanoparticle embedded TiO2 nanofibers-highly efficient photocatalyst for the degradation of rhodamine B. Catal Commun 12(11):1037–1041. doi:10.1016/j.catcom.2011.02.024

    Google Scholar 

  64. Zhang R, Wu H, Lin DD, Pan W (2009) Preparation of necklace-structured TiO2/SnO2 hybrid nanofibers and their photocatalytic activity. J Am Ceram Soc 92(10):2463–2466. doi:10.1111/j.1551-2916.2009.03223.x

    Google Scholar 

  65. Liu ZY, Sun DD, Guo P, Leckie JO (2007) An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett 7(4):1081–1085. doi:10.1021/nl061898e

    Google Scholar 

  66. Wang CH, Shao CL, Zhang XT, Liu YC (2009) SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. Inorg Chem 48(15):7261–7268. doi:10.1021/ic9005983

    Google Scholar 

  67. Peng XH, Santulli AC, Sutter E, Wong SS (2012) Fabrication and enhanced photocatalytic activity of inorganic core-shell nanofibers produced by coaxial electrospinning. Chem Sci 3(4):1262–1272. doi:10.1039/c2sc00436d

    Google Scholar 

  68. Cao TP, Li YJ, Wang CH, Wei LM, Shao CL, Liu YC (2010) Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures. Mater Res Bull 45(10):1406–1412. doi:10.1016/j.materresbull.2010.06.043

    Google Scholar 

  69. Cao TP, Li YJ, Wang CH, Wei LM, Shao CL, Liu YC (2010) Three-dimensional hierarchical CeO2 nanowalls/TiO2 nanofibers heterostructure and its high photocatalytic performance. J Sol-gel Technol 55(1):105–110. doi:10.1007/s10971-010-2221-x

    Google Scholar 

  70. Wang HY, Yang Y, Li X, Li LJ, Wang C (2010) Preparation and characterization of porous TiO2/ZnO composite nanofibers via electrospinning. Chin Chem Lett 21(9):1119–1123. doi:10.1016/j.cclet.2010.03.009

    Google Scholar 

  71. Liu RL, Ye HY, Xiong XP, Liu HQ (2010) Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Mater Chem Phys 121(3):432–439. doi:10.1016/j.matchemphys.2010.02.002

    Google Scholar 

  72. Kanjwal MA, Barakat NA, Sheikh FA, Kim HY (2010) Electronic characterization and photocatalytic properties of TiO2/CdO electrospun nanofibers. J Mater Sci 45(5):1272–1279. doi:10.1007/s10853-009-4078-3

    Google Scholar 

  73. Santala E, Kemell M, Leskela M, Ritala M (2009) The preparation of reusable magnetic and photocatalytic composite nanofibers by electrospinning and atomic layer deposition. Nanotechnology 20(3):035602. doi:10.1088/0957-4484/20/3/035602

    Google Scholar 

  74. Wang ZJ, Li ZY, Zhang HN, Wang C (2009) Improved photocatalytic activity of mesoporous ZnO-SnO2 coupled nanofibers. Catal Commun 11(4):257–260. doi:10.1016/j.catcom.2009.10.006

    Google Scholar 

  75. Zhang ZY, Shao CL, Li XH, Zhang L, Xue HM, Wang CH, Liu YC (2010) Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity. J Phys Chem C 114(17):7920–7925. doi:10.1021/jp100262q

    Google Scholar 

  76. Liu RL, Huang YX, Xia AH, Liu HQ (2010) Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers. J Alloys Compd 503(1):103–110. doi:10.1016/j.jallcom.2010.04.211

    Google Scholar 

  77. Asokan K, Park JY, Choi SW, Kim SS (2010) Nanocomposite ZnO-SnO2 nanofibers synthesized by electrospinning method. Nanoscale Res Lett 5(4):747–752. doi:10.1007/s11671-010-9552-y

    Google Scholar 

  78. Zhang ZY, Shao CL, Li XH, Wang CH, Zhang MY, Liu YC (2010) Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl Mater Interface 2(10):2915–2923. doi:10.1021/am100618h

    Google Scholar 

  79. Yousef A, Barakat NAM, Amna T, Unnithan AR, Al-Deyab SS, Kim HY (2012) Influence of CdO-doping on the photoluminescence properties of ZnO nanofibers: effective visible light photocatalyst for waste water treatment. J Luminescen 132(7):1668–1677. doi:10.1016/j.jlumin.2012.02.031

    Google Scholar 

  80. Li CR, Chen R, Zhang XQ, Shu SX, Xiong J, Zheng YY, Dong WJ (2011) Electrospinning of CeO2-ZnO composite nanofibers and their photocatalytic property. Mater Lett 65(9):1327–1330. doi:10.1016/j.matlet.2011.01.075

    Google Scholar 

  81. Li CR, Zhang XQ, Dong WJ, Liu YS (2012) High photocatalytic activity material based on high-porosity ZnO/CeO2 nanofibers. Mater Lett 80:145–147. doi: 10.1016/j.matlet.2012.04.105

    Google Scholar 

  82. Ren PR, Fan HQ, Wang X (2012) Electrospun nanofibers of ZnO/BaTiO3 heterostructures with enhanced photocatalytic activity. Catal Commun 25:32–35. doi: 10.1016/j.catcom.2012.04.003

    Google Scholar 

  83. Wang RY, Guo J, Chen D, Miao YE, Pan JS, Tjiu WW, Liu TX (2011) “Tube brush” like ZnO/SiO2 hybrid to construct a flexible membrane with enhanced photocatalytic properties and recycling ability. J Mater Chem 21(48):19375–19380. doi:10.1039/c1jm13979g

    Google Scholar 

  84. Fragala ME, Cacciotti I, Aleeva Y, Nigro RL, Bianco A, Malandrino G, Spinella C, Pezzotti G, Gusmano G (2010) Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal–organic chemical vapour deposition. CrystEngComm 12(11):3858–3865. doi:10.1039/c004157b

    Google Scholar 

  85. Zhang P, Shao CL, Li XH, Zhang MY, Zhang X, Sun YY, Liu YC (2012) In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: a three-way synergistic heterostructure with enhanced photocatalytic activity. J Hazard Mater 237–238:331–338. doi:10.1016/j.jhazmat.2012.08.054

    Google Scholar 

  86. Bai HW, Liu ZY, Sun DD (2012) The design of a hierarchical photocatalyst inspired by natural forest and its usage on hydrogen generation. Int J Hydrogen Energy 37(19):13998–14008. doi:10.1016/j.ijhydene.2012.07.041

    Google Scholar 

  87. Su CY, Shao CL, Liu YC (2011) Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light. J Colloid Interface Sci 359(1):220–227. doi:10.1016/j.jcis.2011.03.044

    Google Scholar 

  88. Zhang ZY, Shao CL, Li XH, Sun YY, Zhang MY, Mu JB, Zhang P, Cuo ZC, Liu YC (2013) Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 5(2):606–618. doi:10.1039/c2nr32301j

    Google Scholar 

  89. Yousef A, Barakat NAM, Amna T, Al-Deyab SS, Hassan MS, Abdel-hay A, Kim HY (2012) Inactivation of pathogenic Klebsiella pneumoniae by CuO/TiO2 nanofibers: a multifunctional nanomaterial via one-step electrospinning. Ceram Int 38(6):4525–4532. doi:10.1016/j.ceramint.2012.02.029

    Google Scholar 

  90. Mu JB, Chen B, Zhang MY, Guo ZC, Zhang P, Zhang ZY, Sun YY, Shao CL, Liu YC (2012) Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. ACS Appl Mater Interfaces 4(1):424–430. doi:10.1021/am201499r

    Google Scholar 

  91. Wang Y, Zhang JW, Liu LX, Zhu CQ, Liu XQ, Su Q (2012) Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning. Mater Lett 75:95–98. doi:10.1016/j.matlet.2012.01.074

    Google Scholar 

  92. Lu BG, Li XD, Wang TH, Xie EQ, Xu Z (2013) WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis. J Mater Chem A 1(12):3900–3906. doi:10.1039/c3ta01444d

    Google Scholar 

  93. Shang M, Wang WZ, Zhang L, Sun SM, Wang L, Zhou L (2009) 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synthesis and enhanced visible photocatalytic degradation performances. J Phys Chem C 113(33):14727–14731. doi:10.1021/jp9045808

    Google Scholar 

  94. Zhang YP, Fei LF, Jiang XD, Pan CX, Wang Y (2011) Engineering nanostructured Bi2WO6-TiO2 toward effective utilization of natural light in photocatalysis. J Am Ceram Soc 94(12):4157–4161. doi:10.1111/j.1551-2916.2011.04905.x

    Google Scholar 

  95. Cao TP, Li YJ, Wang CH, Zhang ZY, Zhang MY, Shao CL, Liu YC (2011) Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity. J Mater Chem 21(19):6922–6927. doi:10.1039/c1jm10343a

    Google Scholar 

  96. Zhang MY, Shao CL, Guo ZC, Zhang ZY, Mu JB, Cao TP, Liu YC (2011) Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl Mater Interfaces 3(2):369–377. doi:10.1021/am100989a

    Google Scholar 

  97. Yang Y, Wang HY, Li X, Wang C (2009) Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis. Mater Lett 63(2):331–333. doi:10.1016/j.matlet.2008.10.037

    Google Scholar 

  98. Xu J, Wang WZ, Shang M, Gao EP, Zhang ZJ, Ren J (2011) Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation. J Hazard Mater 196:426–430. doi:10.1016/j.jhazmat.2011.09.010

    Google Scholar 

  99. Park JY, Lee JH, Choi DY, Hwang CH, Lee JW (2012) Influence of Fe doping on phase transformation and crystallite growth of electrospun TiO2 nanofibers for photocatalytic reaction. Mater Lett 88:156–159. doi:10.1016/j.matlet.2012.07.080

    Google Scholar 

  100. Zhang ZY, Shao CL, Zhang LN, Li XH, Liu YC (2010) Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. J Colloid Interface Sci 351(1):57–62. doi:10.1016/j.jcis.2010.05.067

    Google Scholar 

  101. Lee DY, Kim BY, Cho NI, Oh YJ (2011) Electrospun Er3+-TiO2 nanofibrous films as visible light induced photocatalysts. Current Appl Phys 11(3):S324–327. doi: 10.1016/j.cap.2011.03.022

    Google Scholar 

  102. Lee DY, Lee MH, Cho NI (2012) Preparation and photocatalytic degradation of erbium doped titanium dioxide nanorods. Current Appl Phys 12(4):1229–1233. doi: 10.1016/j.cap.2012.03.007

    Google Scholar 

  103. Cacciotti I, Bianco A, Pezzotti G, Gusmano G (2011) Synthesis, thermal behaviour and luminescence properties of rare earth-doped titania nanofibers. Chem Eng J 166(2):751–764. doi:10.1016/j.cej.2010.07.008

    Google Scholar 

  104. Camillo DD, Ruggieri F, Santucci S, Lozzi L (2012) N-doped TiO2 nanofibers deposited by electrospinning. J Phys Chem C 116(34):18427–18431. doi:10.1021/jp302499n

    Google Scholar 

  105. Li HP, Zhang W, Huang SY, Pan W (2012) Enhanced visible-light-driven photocatalysis of surface nitrided electrospun TiO2 nanofibers. Nanoscale 4(3):801–806. doi:10.1039/c1nr11346a

    Google Scholar 

  106. Im JH, Yang SJ, Yun CH, Park CR (2012) Simple fabrication of carbon/TiO2 composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B. Nanotechnology 23(3):035604. doi:10.1088/0957-4484/23/3/035604

    Google Scholar 

  107. Li HP, Zhu YH, Cao HM, Yang XL, Li CZ (2013) Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fibers. Mater Res Bull 48(2):232–237. doi:10.1016/j.materresbull.2012.10.052

    Google Scholar 

  108. Im JS, Kim MI, Lee YS (2008) Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation. Mater Lett 62(21–22):3652–3655. doi:10.1016/j.matlet.2008.04.019

    Google Scholar 

  109. Wang QQ, Wang X, Li XJ, Cai YB, Wei QF (2011) Surface modification of PMMA/O-MMT composite microfibers by TiO2 coating. Appl Surf Sci 258(1):98–102. doi: 10.1016/j.apsusc.2011.08.013

    Google Scholar 

  110. Costa RGF, Ribeiro C, Mattoso HC (2013) Study of the effect of rutile/anatase TiO2 nanoparticles synthesized by hydrothermal route in electrospun PVA/TiO2 nanocomposites. J Appl Polym Sci 127(6):4463–4469. doi:10.1002/app.38031

    Google Scholar 

  111. Lombardi M, Palmero P, Sangermano M, Varesano A (2011) Electrospun polyamide-6 membranes containing titanium dioxide as photocatalyst. Polym Int 60(2):234–239. doi:10.1002/pi.2932

    Google Scholar 

  112. Kim YB, Cho D, Park WH (2010) Fabrication and characterization of TiO2/poly(dimethyl siloxane) composite fibers with thermal and mechanical stability. J Appl Polym Sci 116(1):449–454. doi:10.1002/app.31480

    Google Scholar 

  113. Neubert S, Pliszka D, Thavasi V, Wintermantel E, Ramakrishna S (2011) Conductive electrospun PANi-PEO/TiO2 fibrous membrane for photo catalysis. Mater Sci Eng B 176(8):640–646. doi:10.1016/j.mseb.2011.02.007

    Google Scholar 

  114. Seo DK, Jeun JP, Kang PH (2011) Preparation and characterization of the electrospun PCS/TiO2 fiber mat by electron beam irradiation. J Ind Eng Chem 17(3):803–807. doi:10.1016/j.jiec.2011.05.003

    Google Scholar 

  115. He TS, Zhou ZF, Xu WB, Ren FM, Ma HH, Wang J (2009) Preparation and photocatalysis of TiO2-fluoropolymer electrospun fiber nanocomposites. Polymer 50(13):3031–3036. doi:10.1016/j.polymer.2009.04.015

    Google Scholar 

  116. Bedford NM, Steckl AJ (2010) Photocatalytic self cleaning textile fibers by coaxial electrospinning. ACS Appl Mater Interface 2(8):2448–2455. doi:10.1021/am1005089

    Google Scholar 

  117. Pant HR, Rajpandeya D, Nam KT, Baek W, Hong ST, Kim HY (2011) Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater 189(1–2):465–471. doi:10.1016/j.jhazmat.2011.02.062

    Google Scholar 

  118. Chang ZJ (2011) “Firecracker-shaped” ZnO/polyimide hybrid nanofibers via electrospinning and hydrothermal process. Chem Commun 47(15):4427–4429. doi:10.1039/c0cc05634k

    Google Scholar 

  119. Kayaci F, Ozgit-Akgun C, Donmez I, Biyikli N, Uyar T (2012) Polymer–inorganic core–shell nanofibers by electrospinning and atomic layer deposition: Flexible nylon–ZnO core–shell nanofiber mats and their photocatalytic activity. ACS Appl Mater Interfaces 4(11):6185–6194. doi:10.1021/am3017976

    Google Scholar 

  120. Afeesh R, Barakat NAM, Al-Deyab SS, Yousef A, Kim HY (2012) Nematic shaped cadmium sulfide doped electrospun nanofiber mat: highly efficient, reusable, solar light photocatalyst. Colloids Surf A 409:21–29. doi:10.1016/j.colsurfa.2012.05.021

    Google Scholar 

  121. Ardona HAM, Paredes FU, Arellano IHJ, Arco SD (2013) Electrospun PET supported-ionic liquid-stabilized CdS catalyst for the photodegradation of Rhodamine B under visible light. Mater Lett 91:96–99. doi:10.1016/j.matlet.2012.09.069

    Google Scholar 

  122. Wang QY, Chen YJ, Liu RL, Liu HQ, Li ZH (2012) Fabrication and characterization of electrospun CdS-OH/polyacrylonitrile hybrid nanofibers. Compos Part A 43(11):1869–1876. doi:10.1016/j.compositesa.2012.07.023

    Google Scholar 

  123. Unnithan AR, Barakat NAM, Abadir MF, Yousef A, Kim HY (2012) Novel CdPdS/PVAc core-shell nanofibers as an effective photocatalyst for organic pollutants degradation. J Mol Catal A 363–364:186–194. doi:10.1016/j.molcata.2012.06.008

    Google Scholar 

  124. Zhou ZF, Feng Y, Xu WB, Ren FM, Ma HH (2009) Preparation and photocatalytic activity of zinc sulfide/polymer nanocomposites. J Appl Polym Sci 113(2):1264–1269. doi:10.1002/app.30139

    Google Scholar 

  125. He TS, Ma HH, Zhou ZF, Xu WB, Ren FM, Shi ZF, Wang J (2009) Preparation of ZnS-fluoropolymer nanocomposites and its photocatalytic degradation of methylene blue. Polym Degrad Stab 94(12):2251–2256. doi:10.1016/j.polymdegradstab.2009.08.012

    Google Scholar 

  126. Shao LJ, Xing GY, Lv WX, Yu HJ, Qiu MX, Zhang XM, Qi CZ (2013) Photodegradation of azo-dyes in aqueous solution by polyacrylonitrile nanofiber mat-supported metalloporphyrins. Polym Int 62(2):289–294. doi:10.1002/pi.4298

    Google Scholar 

  127. Guo ZC, Shao CL, Mu JB, Zhang MY, Zhang ZY, Zhang P, Chen B, Liu YC (2011) Controllable fabrication of cadmium phthalocyanine nanostructures immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic properties under visible light. Catal Commun 12(10):880–885. doi:10.1016/j.catcom.2011.02.004

    Google Scholar 

  128. Zugle R, Nyokong T (2013) Comparative phototransformation of environmental pollutants using metallophthalocyanines supported on electrospun polymer fibers. J Appl Polym Sci 128(2):1131–1142. doi:10.1002/app.38381

    Google Scholar 

  129. Zugle R, Antunes E, Khene S, Nyokong T (2012) Photooxidation of 4-chlorophenol sensitized by lutetium tetraphenoxy phthalocyanine anchored on electrospun polystyrene polymer fiber. Polyhedron 33(1):74–81. doi:10.1016/j.poly.2011.11.005

    Google Scholar 

  130. Wang P, Huang BB, Qin XY, Zhuang XY, Dai Y, Wei JY, Whangbo MH (2008) Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 47(41):7931. doi:10.1002/anie.200802483

    Google Scholar 

  131. Lei JY, Wang W, Song MX, Dong B, Li ZY, Wang C, Li LJ (2011) Ag/AgCl coated polyacrylonitrile nanofiber membranes: synthesis and photocatalytic properties. React Funct Polym 71(11):1071–1076. doi:10.1016/j.reactfunctpolym.2011.08.002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ce Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, X., Wang, C. (2014). Electrospun Nanofiber-Based Photocatalysts. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_15

Download citation

Publish with us

Policies and ethics