Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Monitoring of usable, explosive, and hazardous materials (gases, heavy metal ions, and organic contaminants) is one of the most important concerns that has attracted growing attention in the past few decades. Numerous sensors have been developed to meet the demands and the pursuit of highly sensitive, selective, reversible, fast response and recovery, cost-effective, and portable sensors which have gained great interest. Electrospun nanofibrous membranes that possess large surface area, high porosity, good interconnected porous structure, and flexibility of surface functionalization are expected to be ideal candidates of substrates to improve the performance of the sensors. More interestingly, the novel two-dimensional nanofiber/net membranes fabricated by electrospinning/netting are demonstrated to have extremely large surface area and unique pore structure, which could further enhance the sensitivity, stability, and response speed of the sensors. In this chapter, we summarize recent progress in the development of electrospun nanofiber-based sensors, describe the design of different types of sensors, and discuss their sensing performances in detail. This chapter might bring further development and evolution of sensors based on electrospun nanofibers for the detection of various analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35(6):971–986. doi:10.1016/j.envint.2009.02.006

    Google Scholar 

  2. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. Nature 333(6169):134–139. doi:10.1038/333134a0

    Google Scholar 

  3. Jarup L (2004) Health and environment information systems for exposure and disease mapping, and risk assessment. Environ Health Perspect 112(9):995–997. doi:10.1289/ehp.6736

    Google Scholar 

  4. Onyido I, Norris AR, Buncel E (2004) Biomolecule-mercury interactions: modalities of DNA base-mercury binding mechanisms. Remediation strategies. Chem Rev 104(12):5911–5929. doi:10.1021/cr030443w

    Google Scholar 

  5. Maserti BE, Ferrara R (1991) Mercury in plants, soil and atmosphere near a chlor-alkali complex. Water Air Soil Pollut 56(1):15–20. doi:10.1007/bf00342257

    Google Scholar 

  6. Komarek M, Ettler V, Chrastny V, Mihaljevic M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34(4):562–577. doi:10.1016/j.envint.2007.10.005

    Google Scholar 

  7. Yuan CG, Shi JB, He B, Liu JF, Liang LN, Jiang GB (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Int 30(6):769–783. doi:10.1016/j.envint.2004.01.001

    Google Scholar 

  8. Mateos R, Espartero JL, Trujillo M, Rios JJ, Leon M, Alcudia F, Cert A (2001) Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J Agric Food Chem 49(5):2185–2192. doi:10.1021/jf0013205

    Google Scholar 

  9. Carabias-Martinez R, Rodriguez E, Fernandez ME, Calvo L, Sanchez FJ (2003) Evolution over time of the agricultural pollution of waters in an area of Salamanca and Zamora (Spain). Water Res 37(4):928–938. doi:10.1016/s0043-1354(02)00366-4

    Google Scholar 

  10. Galloway TS, Sanger RC, Smith KL, Fillmann G, Readman JW, Ford TE, Depledge MH (2002) Rapid assessment of marine pollution using multiple biomarkers and chemical immunoassays. Environ Sci Technol 36(10):2219–2226. doi:10.1021/es010300w

    Google Scholar 

  11. Basheer C, Balasubramanian R, Lee HK (2003) Determination of organic micropollutants in rainwater using hollow fiber membrane/liquid-phase microextraction combined with gas chromatography–mass spectrometry. J Chromatogr A 1016(1):11–20. doi:10.1016/s0021-9673(03)01295-0

    Google Scholar 

  12. Sturgeon RE, Willie SN, Berman SS (1985) Preconcentration of selenium and antimony from seawater for determination by graphite-furnace atomic-absorption spectrometry. Anal Chem 57(1):6–9. doi:10.1021/ac00279a006

    Google Scholar 

  13. Kalcher K, Kauffmann JM, Wang J, Svancara I, Vytras K, Neuhold C, Yang Z (1995) Sensors based on carbon-paste in electrochemical analysis – a review with particular emphasis on the period 1990–1993. Electroanalysis 7(1):5–22. doi:10.1002/elan.1140070103

    Google Scholar 

  14. Karton N, Segal E, Omer L, Portnoy M, Satchi R, Shabat D (2011) A unique paradigm for a turn-on near-infrared cyanine-based probe: noninvasive intravital optical imaging of hydrogen peroxide. J Am Chem Soc 133(28):10960–10965. doi:10.1021/ja203145v

    Google Scholar 

  15. Janshoff A, Galla HJ, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angew Chem-Int Ed 39(22):4004–4032. doi:10.1002/1521-3773(20001117)39:22<4004::aid-anie4004>3.0.co;2-2

    Google Scholar 

  16. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5(8):8075–8109. doi:10.1039/c2ee21818f

    Google Scholar 

  17. Zhang LD, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(2):128–142. doi:10.1016/j.nantod.2010.03.002

    Google Scholar 

  18. Su S, Wu W, Gao J, Lu J, Fan C (2012) Nanomaterials-based sensors for applications in environmental monitoring. J Mater Chem 22(35):18101–18110. doi:10.1039/c2jm33284a

    Google Scholar 

  19. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. doi:10.1016/s0266-3538(03)00178-7

    Google Scholar 

  20. Zhang SG (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178. doi:10.1038/nbt874

    Google Scholar 

  21. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433. doi:10.1016/j.addr.2007.04.022

    Google Scholar 

  22. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89–R106. doi:10.1088/0957-4484/17/14/r01

    Google Scholar 

  23. Subbiah T, Bhat GS, Tock RW, Pararneswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569. doi:10.1002/app.21481

    Google Scholar 

  24. Lin J, Wang X, Ding B, Yu J, Sun G, Wang M (2012) Biomimicry via electrospinning. Crit Rev Solid State 37(2):94–114. doi:10.1080/10408436.2011.627096

    Google Scholar 

  25. Ding B, Li C, Miyauchi Y, Kuwaki O, Shiratori S (2006) Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology 17(15):3685–3691. doi:10.1088/0957-4484/17/15/011

    Google Scholar 

  26. Wang X, Ding B, Sun G, Wang M, Yu J (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58(8):1173–1243, doi:http://dx.doi.org/10.1016/j.pmatsci.2013.05.001

  27. Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9(3):1609–1624. doi:10.3390/s90301609

    Google Scholar 

  28. Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27. doi:10.1016/S1369-7021(10)70200-5

    Google Scholar 

  29. Kang E, Kim M, Oh JS, Park DW, Shim SE (2012) Electrospun BMIMPF6/nylon 6,6 nanofiber chemiresistors as organic vapour sensors. Macromol Res 20(4):372–378. doi:10.1007/s13233-012-0043-0

    Google Scholar 

  30. Wang W, Huang H, Li Z, Zhang H, Wang Y, Zheng W, Wang C (2008) Zinc oxide nanofiber gas sensors via electrospinning. J Am Ceram Soc 91(11):3817–3819. doi:10.1111/j.1551-2916.2008.02765.x

    Google Scholar 

  31. Huang JS, Wang DW, Hou HQ, You TY (2008) Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv Funct Mater 18(3):441–448. doi:10.1002/adfm.200700729

    Google Scholar 

  32. Ding Y, Liu Y, Parisi J, Zhang L, Lei Y (2011) A novel NiO-Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens Bioelectron 28(1):393–398. doi:10.1016/j.bios.2011.07.054

    Google Scholar 

  33. Jung L, Balakrishnan S, Jaehwa C, Seong J, Jong K (2011) Detection of adulterated gasoline using colorimetric organic microfibers. J Mater Chem 21(8):2648–2655. doi:10.1039/c0jm02287j

    Google Scholar 

  34. Manesh KM, Santhosh P, Gopalan A, Lee KP (2007) Electrospun poly(vinylidene fluoride)/poly(aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor. Anal Biochem 360(2):189–195. doi:10.1016/j.ab.2006.09.021

    Google Scholar 

  35. Wang X, Ding B, Yu J, Si Y, Yang S, Sun G (2011) Electro-netting: fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing. Nanoscale 3(3):911–915. doi:10.1039/c0nr00783h

    Google Scholar 

  36. Ding B, Si Y, Wang X, Yu J, Feng L, Sun G (2011) Label-free ultrasensitive colorimetric detection of copper(II) ions utilizing polyaniline/polyamide-6 nano-fiber/net sensor strips. J Mater Chem 21(35):13345–13353. doi:10.1039/c1jm11851j

    Google Scholar 

  37. Bin D, Xianfeng W, Jianyong Y, Moran W (2011) Polyamide 6 composite nano-fiber/net functionalized by polyethyleneimine on quartz crystal microbalance for highly sensitive formaldehyde sensors. J Mater Chem 21(34):12784–12792. doi:10.1039/c1jm11847a

    Google Scholar 

  38. Henry Wohltjen RD (1979) Surface acoustic wave probe for chemical analysis. Anal Chem 51(9):1458–1464. doi:10.1021/ac50045a024

    Google Scholar 

  39. Liu S, Sun H, Nagarajan R, Kumar J, Gu Z, Cho J, Kurup P (2011) Dynamic chemical vapor sensing with nanofibrous film based surface acoustic wave sensors. Sens Actuator A Phys 167(1):8–13. doi:10.1016/j.sna.2011.02.007

    Google Scholar 

  40. Wang X, Ding B, Yu J, Wang M (2011) Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. J Mater Chem 21(40):16231–16238. doi:10.1039/c1jm13037d

    Google Scholar 

  41. Sun M, Ding B, Yu J (2012) Sensitive metal ion sensors based on fibrous polystyrene membranes modified by polyethyleneimine. RSC Adv 2(4):1373–1378. doi:10.1039/c1ra00673h

    Google Scholar 

  42. Lin Q, Li Y, Yang M (2012) Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers. Anal Chim Acta 748:73–80. doi:10.1016/j.aca.2012.08.041

    Google Scholar 

  43. He XL, Arsat R, Sadek AZ, Wlodarski W, Kalantar K, Li JP (2010) Electrospun PVP fibers and gas sensing properties of PVP/36 deg YX LiTaO3 SAW device. Sens Actuator B Chem 145(2):674–679. doi:10.1016/j.snb.2010.01.013

    Google Scholar 

  44. Buttry DA, Ward MD (1992) Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem Rev 92(6):1355–1379. doi:10.1021/cr00014a006

    Google Scholar 

  45. Yoo HY, Bruckenstein S (2013) A novel quartz crystal microbalance gas sensor based on porous film coatings. A high sensitivity porous poly(methylmethacrylate) water vapor sensor. Anal Chim Acta 785:98–103. doi:10.1016/j.aca.2013.04.052

    Google Scholar 

  46. Vashist SK, Vashist P (2011) Recent advances in quartz crystal microbalance-based sensors. J Sens 2011:571405–571418. doi:10.1155/2011/571405

    Google Scholar 

  47. Wang X, Cui F, Lin J, Ding B, Yu J, Al SS (2012) Functionalized nanoporous TiO2 fibers on quartz crystal microbalance platform for formaldehyde sensor. Sens Actuator B Chem 171–172:658–665. doi:10.1016/j.snb.2012.05.050

    Google Scholar 

  48. Hu W, Chen S, Liu L, Ding B, Wang H (2011) Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens Actuator B Chem 157(2):554–559. doi:10.1016/j.snb.2011.05.021

    Google Scholar 

  49. Wang X, Wang J, Si Y, Ding B, Yu J, Sun G, Luo W, Zheng G (2012) Nanofiber-net-binary structured membranes for highly sensitive detection of trace HCl gas. Nanoscale 4(23):7585–7592. doi:10.1039/c2nr32730a

    Google Scholar 

  50. Wang X, Ding B, Sun M, Yu J, Sun G (2010) Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sens Actuator B Chem 144(1):11–17. doi:10.1016/j.snb.2009.08.023

    Google Scholar 

  51. Sabri YM, Kojima R, Ippolito SJ, Wlodarski W, Kalantar K, Kaner RB, Bhargava SK (2011) QCM based mercury vapor sensor modified with polypyrrole supported palladium. Sens Actuator B Chem 160(1):616–622. doi:10.1016/j.snb.2011.08.038

    Google Scholar 

  52. Pei Z, Ma X, Ding P, Zhang W, Luo Z, Li G (2010) Study of a QCM dimethyl methylphosphonate sensor based on a ZnO-modified nanowire-structured manganese dioxide film. Sensors 10(9):8275–8290. doi:10.3390/s100908275

    Google Scholar 

  53. Kim ID, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL (2006) Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett 6(9):2009–2013. doi:10.1021/nl061197h

    Google Scholar 

  54. Choi SH, Hwang IS, Lee JH, Oh SG, Kim ID (2011) Microstructural control and selective C2H5OH sensing properties of Zn2SnO4 nanofibers prepared by electrospinning. Chem Commun 47(33):9315–9317. doi:10.1039/c1cc10707k

    Google Scholar 

  55. Yoon JW, Choi JK, Lee JH (2012) Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers. Sens Actuator B Chem 161(1):570–577. doi:10.1016/j.snb.2011.11.002

    Google Scholar 

  56. Wang G, Ji Y, Huang X, Yang X, Gouma PI, Dudley M (2006) Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J Phys Chem B 110(47):23777–23782. doi:10.1021/jp0635819

    Google Scholar 

  57. Zhang Y, He X, Li J, Miao Z, Huang F (2008) Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens Actuator B Chem 132(1):67–73. doi:10.1016/j.snb.2008.01.006

    Google Scholar 

  58. Leng JY, Xu XJ, Lv N, Fan HT, Zhang T (2011) Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning. J Colloid Interface Sci 356(1):54–57. doi:10.1016/j.jcis.2010.11.079

    Google Scholar 

  59. Ruggieri F, Di Camillo D, Lozzi L, Santucci S, De A, Ferri G, Giancaterini L, Cantalini C (2013) Preparation of nitrogen doped TiO2 nanofibers by near field electrospinning (NFES) technique for NO2 sensing. Sens Actuator B Chem 179:107–113. doi:10.1016/j.snb.2012.10.094

    Google Scholar 

  60. Choi SW, Park JY, Kim SS (2011) Dependence of gas sensing properties in ZnO nanofibers on size and crystallinity of nanograins. J Mater Res 26(14):1662–1665. doi:10.1557/jmr.2011.209

    Google Scholar 

  61. Lee HU, Ahn K, Lee SJ, Kim JP, Kim HG, Jeong SY, Cho CR (2011) ZnO nanobarbed fibers: fabrication, sensing NO2 gas, and their sensing mechanism. Appl Phys Lett 98(19). doi:10.1063/1.3590202

  62. Zhang Z, Li X, Wang C, Wei L, Liu Y, Shao C (2009) ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem C 113(45):19397–19403. doi:10.1021/jp9070373

    Google Scholar 

  63. Tuan N, Park S, Kim JB, Kim TK, Seong GH, Choo J, Kim YS (2011) Polycrystalline tungsten oxide nanofibers for gas-sensing applications. Sens Actuator B Chem 160(1):549–554. doi:10.1016/j.snb.2011.08.028

    Google Scholar 

  64. Qi Q, Zhang T, Liu L, Zheng X (2009) Synthesis and toluene sensing properties of SnO2 nanofibers. Sens Actuator B Chem 137(2):471–475. doi:10.1016/j.snb.2008.11.042

    Google Scholar 

  65. Zheng W, Li Z, Zhang H, Wang W, Wang Y, Wang C (2009) Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater Res Bull 44(6):1432–1436. doi:10.1016/j.materresbull.2008.12.013

    Google Scholar 

  66. Fan HT, Xu XJ, Ma XK, Zhang T (2011) Preparation of LaFeO3 nanofibers by electrospinning for gas sensors with fast response and recovery. Nanotechnology 22(11):115502–115509. doi:10.1088/0957-4484/22/11/115502

    Google Scholar 

  67. Zheng W, Lu X, Wang W, Dong B, Zhang H, Wang Z, Xu X, Wang C (2010) A rapidly responding sensor for methanol based on electrospun In2O3-SnO2 nanofibers. J Am Ceram Soc 93(1):15–17. doi:10.1111/j.1551-2916.2009.03354.x

    Google Scholar 

  68. Song X, Liu L (2009) Characterization of electrospun ZnO-SnO2 nanofibers for ethanol sensor. Sens Actuator A Phys 154(1):175–179. doi:10.1016/j.sna.2009.06.010

    Google Scholar 

  69. Wei S, Zhang Y, Zhou M (2011) Toluene sensing properties of SnO2-ZnO hollow nanofibers fabricated from single capillary electrospinning. Solid State Commun 151(12):895–899. doi:10.1016/j.ssc.2011.03.031

    Google Scholar 

  70. Wang Z, Li Z, Sun J, Zhang H, Wang W, Zheng W, Wang C (2010) Improved hydrogen monitoring properties based on p-NiO/n-SnO2 heterojunction composite nanofibers. J Phys Chem C 114(13):6100–6105. doi:10.1021/jp9100202

    Google Scholar 

  71. Xu L, Zheng R, Liu S, Song J, Chen J, Dong B, Song H (2012) NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Inorg Chem 51(14):7733–7740. doi:10.1021/ic300749a

    Google Scholar 

  72. Liu L, Guo C, Li S, Wang L, Dong Q, Li W (2010) Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens Actuator B Chem 150(2):806–810. doi:10.1016/j.snb.2010.07.022

    Google Scholar 

  73. Zhang HN, Li ZY, Liu L, Xu XR, Wang ZJ, Wang W, Zheng W, Dong B, Wang C (2010) Enhancement of hydrogen monitoring properties based on Pd–SnO2 composite nanofibers. Sensor Actuator B Chem 147(1):111–115. doi:10.1016/j.snb.2010.01.056

    Google Scholar 

  74. Cho NG, Yang DJ, Jin MJ, Kim HG, Tuller HL, Kim ID (2011) Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sensor Actuator B Chem 160(1):1468–1472. doi:10.1016/j.snb.2011.07.035

    Google Scholar 

  75. Cho S, Kim DH, Lee BS, Jung J, Yu WR, Hong SH, Lee S (2012) Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition an O2 plasma process and an annealing process. Sens Actuator B Chem 162(1):300–306. doi:10.1016/j.snb.2011.12.081

    Google Scholar 

  76. Modafferi V, Panzera G, Donato A, Antonucci PL, Cannilla C, Donato N, Spadaro D, Neri G (2012) Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers. Sens Actuator B Chem 163(1):61–68. doi:10.1016/j.snb.2012.01.007

    Google Scholar 

  77. Zhang Y, Li J, An G, He X (2010) Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties. Sens Actuator B Chem 144(1):43–48. doi:10.1016/j.snb.2009.10.012

    Google Scholar 

  78. Zhang XJ, Qiao GJ (2012) High performance ethanol sensing films fabricated from ZnO and In2O3 nanofibers with a double-layer structure. Appl Surf Sci 258(17):6643–6647, doi:http://dx.doi.org/10.1016/j.apsusc.2012.03.098

  79. Choi SH, Choi SJ, Min BK, Lee WY, Park JS, Kim ID (2013) Facile synthesis of p-type perovskite SrTi0.65Fe0.35O3 nanofibers prepared by electrospinning and their oxygen-sensing properties. Macromol Mater Eng 298(5):521–527. doi:10.1002/mame.201200375

    Google Scholar 

  80. Hwang DK, Kim S, Lee JH, Hwang IS, Kim ID (2011) Phase evolution of perovskite LaNiO3 nanofibers for supercapacitor application and p-type gas sensing properties of LaOCl-NiO composite nanofibers. J Mater Chem 21(6):1959–1965. doi:10.1039/c0jm02256j

    Google Scholar 

  81. Moon J, Park J, Lee S, Zyung T, Kim I (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sensor Actuator B Chem 149(1):301–305. doi:10.1016/j.snb.2010.06.033

    Google Scholar 

  82. Wang W, Li Z, Liu L, Zhang H, Zheng W, Wang Y, Huang H, Wang Z, Wang C (2009) Humidity sensor based on LiCl-doped ZnO electrospun nanofibers. Sens Actuator B Chem 141(2):404–409. doi:10.1016/j.snb.2009.06.029

    Google Scholar 

  83. Wang X, Zhao M, Liu F, Jia J, Li X, Cao L (2013) C2H2 gas sensor based on Ni-doped ZnO electrospun nanofibers. Ceram Int 39(3):2883–2887. doi:10.1016/j.ceramint.2012.09.062

    Google Scholar 

  84. Zhang H, Li Z, Liu L, Wang C, Wei Y, MacDiarmid AG (2009) Mg2+/Na+-doped rutile TiO2 nanofiber mats for high-speed and anti-fogged humidity sensors. Talanta 79(3):953–958. doi:10.1016/j.talanta.2009.05.035

    Google Scholar 

  85. Xu L, Xing R, Song J, Xu W, Song H (2013) ZnO-SnO2 nanotubes surface engineered by Ag nanoparticles: synthesis, characterization, and highly enhanced HCHO gas sensing properties. J Mater Chem C 1(11):2174–2182. doi:10.1039/c3tc00689a

    Google Scholar 

  86. Zhang L, Wang X, Zhao Y, Zhu Z, Fong H (2012) Electrospun carbon nano-felt surface-attached with Pd nanoparticles for hydrogen sensing application. Mater Lett 68:133–136. doi:10.1016/j.matlet.2011.10.064

    Google Scholar 

  87. Li Z, Zhang H, Zheng W, Wang W, Huang H, Wang C, MacDiarmid AG, Wei Y (2008) Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J Am Chem Soc 130(15):5036–5037. doi:10.1021/ja800176s

    Google Scholar 

  88. Casalbore G, Yang MJ, Camaioni N, Mari CM, Li Y, Sun H, Ling M (2000) Investigations on the ion transport mechanism in conducting polymer films. Solid State Ion 131(3–4):311–321. doi:10.1016/s0167-2738(00)00688-3

    Google Scholar 

  89. Lin Q, Li Y, Yang M (2012) Polyaniline nanofiber humidity sensor prepared by electrospinning. Sens Actuator B Chem 161(1):967–972. doi:10.1016/j.snb.2011.11.074

    Google Scholar 

  90. Liu HQ, Kameoka J, Czaplewski DA, Craighead HG (2004) Polymeric nanowire chemical sensor. Nano Lett 4(4):671–675. doi:10.1021/nl049826f

    Google Scholar 

  91. Li P, Li Y, Ying B, Yang M (2009) Electrospun nanofibers of polymer composite as a promising humidity sensitive material. Sens Actuator B Chem 141(2):390–395. doi:10.1016/j.snb.2009.07.006

    Google Scholar 

  92. Wang S, Chao D, Berda EB, Jia X, Yang R, Wang X, Jiang T, Wang C (2013) Fabrication of electroactive oligoaniline functionalized poly(amic acid) nanofibers for application as an ammonia sensor. RSC Adv 3(12):4059–4065. doi:10.1039/c3ra00056g

    Google Scholar 

  93. Aussawasathien D, Sahasithiwat S, Menbangpung L (2008) Electrospun camphorsulfonic acid doped poly(o-toluidine)-polystyrene composite fibers: chemical vapor sensing. Synthetic Met 158(7):259–263. doi:10.1016/j.synthmet.2008.01.007

    Google Scholar 

  94. Haynes AS, Gouma PI (2008) Electrospun conducting polymer-based sensors for advanced pathogen detection. IEEE Sens J 8(5–6):701–705. doi:10.1109/jsen.2008.923039

    Google Scholar 

  95. Rojas R, Pinto NJ (2008) Using electrospinning for the fabrication of rapid response gas sensors based on conducting polymer nanowires. IEEE Sens J 8(5–6):951–953. doi:10.1109/jsen.2008.923932

    Google Scholar 

  96. Pinto NJ, Rivera D, Melendez A, Ramos I, Lim JH, Johnson ATC (2011) Electrical response of electrospun PEDOT-PSSA nanofibers to organic and inorganic gases. Sens Actuator B Chem 156(2):849–853. doi:10.1016/j.snb.2011.02.053

    Google Scholar 

  97. Aussawasathien D, Sahasithiwat S, Menbangpung L, Teerawattananon C (2011) Poly(o-anisidine)-polystyrene composite fibers via electrospinning process: surface morphology and chemical vapor sensing. Sens Actuator B Chem 151(2):341–350. doi:10.1016/j.snb.2010.07.048

    Google Scholar 

  98. Chen D, Lei S, Chen Y (2011) A single polyaniline nanofiber field effect transistor and its gas sensing mechanisms. Sensors 11(7):6509–6516. doi:10.3390/s110706509

    Google Scholar 

  99. Bai H, Zhao L, Lu C, Li C, Shi G (2009) Composite nanofibers of conducting polymers and hydrophobic insulating polymers: preparation and sensing applications. Polymer 50(14):3292–3301. doi:10.1016/j.polymer.2009.04.066

    Google Scholar 

  100. Wang Y, Jia W, Strout T, Schempf A, Zhang H, Li B, Cui J, Lei Y (2009) Ammonia gas sensor using polypyrrole-coated TiO2/ZnO nanofibers. Electroanalysis 21(12):1432–1438. doi:10.1002/elan.200904584

    Google Scholar 

  101. Jaewon C, Eun Joo P, Dong Wha P, Sang Eun S (2010) MWCNT-OH adsorbed electrospun nylon 6,6 nanofibers chemiresistor and their application in low molecular weight alcohol vapours sensing. Synthetic Met 160(23–24):2664–2669. doi:10.1016/j.synthmet.2010.10.022

    Google Scholar 

  102. Eaidkong T, Mungkarndee R, Phollookin C, Tumcharern G, Sukwattanasinitt M, Wacharasindhu S (2012) Polydiacetylene paper-based colorimetric sensor array for vapor phase detection and identification of volatile organic compounds. J Mater Chem 22(13):5970–5977. doi:10.1039/c2jm16273c

    Google Scholar 

  103. Chae SK, Park H, Yoon J, Lee CH, Ahn DJ, Kim JM (2007) Polydiacetylene supramolecules in electrospun microfibers: fabrication, micropatterning, and sensor applications. Adv Mater 19(4):521–524. doi:10.1002/adma.200602012

    Google Scholar 

  104. Wang X, Si Y, Wang J, Ding B, Yu J, Al SS (2012) A facile and highly sensitive colorimetric sensor for the detection of formaldehyde based on electro-spinning/netting nano-fiber/nets. Sens Actuator B Chem 163(1):186–193. doi:10.1016/j.snb.2012.01.033

    Google Scholar 

  105. Yarimaga O, Jaworski J, Yoon B, Kim JM (2012) Polydiacetylenes: supramolecular smart materials with a structural hierarchy for sensing, imaging and display applications. Chem Commun 48(19):2469–2485. doi:10.1039/c2cc17441c

    Google Scholar 

  106. Pumtang S, Siripornnoppakhun W, Sukwattanasinitt M, Ajavakom A (2011) Solvent colorimetric paper-based polydiacetylene sensors from diacetylene lipids. J Colloid Interface Sci 364(2):366–372. doi:10.1016/j.jcis.2011.08.074

    Google Scholar 

  107. Yoon J, Chae SK, Kim JM (2007) Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J Am Chem Soc 129(11):3038–3039. doi:10.1021/ja067856+

    Google Scholar 

  108. Yoon J, Jung YS, Kim JM (2009) A combinatorial approach for colorimetric differentiation of organic solvents based on conjugated polymer-embedded electrospun fibers. Adv Funct Mater 19(2):209–214. doi:10.1002/adfm.200800963

    Google Scholar 

  109. Poltue T, Rangkupan R, Dubas ST, Dubas L (2011) Nickel(II) ions sensing properties of dimethylglyoxime/poly(caprolactone) electrospun fibers. Mater Lett 65(14):2231–2234. doi:10.1016/j.matlet.2011.04.012

    Google Scholar 

  110. Li Y, Si Y, Wang X, Ding B, Sun G, Zheng G, Luo W, Yu J (2013) Colorimetric sensor strips for lead (II) assay utilizing nanogold probes immobilized polyamide-6/nitrocellulose nano-fibers/nets. Biosens Bioelectron 48:244–250. doi:10.1016/j.bios.2013.03.085

    Google Scholar 

  111. Van der Schueren L, Mollet T, Ceylan Ö, De Clerck K (2010) The development of polyamide 6.6 nanofibres with a pH-sensitive function by electrospinning. Eur Polym J 46(12):2229–2239, doi:http://dx.doi.org/10.1016/j.eurpolymj.2010.09.016

    Google Scholar 

  112. Van der Schueren L, De Meyer T, Steyaert I, Ceylan O, Hemelsoet K, Van Speybroeck V, De Clerck K (2013) Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohyd Polym 91(1):284–293. doi:10.1016/j.carbpol.2012.08.003

    Google Scholar 

  113. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205(1):3–40. doi:10.1016/s0010-8545(00)00246-0

    Google Scholar 

  114. Wang M, Meng G, Huang Q, Qian Y (2012) Electrospun 1,4-DHAQ-doped cellulose nanofiber films for reusable fluorescence detection of trace Cu2+ and further for Cr3+. Environ Sci Technol 46(1):367–373. doi:10.1021/es202137c

    Google Scholar 

  115. Basabe L, Reinhoudt DN, Crego M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36(6):993–1017. doi:10.1039/b609548h

    Google Scholar 

  116. Adewuyi S, Ondigo DA, Zugle R, Tshentu Z, Nyokong T, Torto N (2012) A highly selective and sensitive pyridylazo-2-naphthol-poly(acrylic acid) functionalized electrospun nanofiber fluorescence “turn-off” chemosensory system for Ni2+. Anal Method 4(6):1729–1735. doi:10.1039/c2ay25182e

    Google Scholar 

  117. Wang W, Yang Q, Sun L, Wang H, Zhang C, Fei X, Sun M, Li Y (2011) Preparation of fluorescent nanofibrous film as a sensing material and adsorbent for Cu2+ in aqueous solution via copolymerization and electrospinning. J Hazard Mater 194:185–192. doi:10.1016/j.jhazmat.2011.07.083

    Google Scholar 

  118. Wang W, Wang X, Yang Q, Fei X, Sun M, Song Y (2013) A reusable nanofibrous film chemosensor for highly selective and sensitive optical signaling of Cu2+ in aqueous media. Chem Commun 49(42):4833–4835. doi:10.1039/c3cc41317a

    Google Scholar 

  119. Davis BW, Niamnont N, Hare CD, Sukwattanasinitt M, Cheng Q (2010) Nanofibers doped with dendritic fluorophores for protein detection. ACS Appl Mater Interface 2(7):1798–1803. doi:10.1021/am100345g

    Google Scholar 

  120. Long Y, Chen H, Yang Y, Wang H, Yang Y, Li N, Li K, Pei J, Liu F (2009) Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor. Macromolecules 42(17):6501–6509. doi:10.1021/ma900756w

    Google Scholar 

  121. Wang XY, Kim YG, Drew C, Ku BC, Kumar J, Samuelson LA (2004) Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett 4(2):331–334. doi:10.1021/nl034885z

    Google Scholar 

  122. Silva AP, Fox DB, Huxley AJM, Moody TS (2000) Combining luminescence, coordination and electron transfer for signalling purposes. Coord Chem Rev 205(1):41–57. doi:10.1016/s0010-8545(00)00238-1

    Google Scholar 

  123. Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205(1):59–83. doi:10.1016/s0010-8545(00)00242-3

    Google Scholar 

  124. Keefe MH, Benkstein KD, Hupp JT (2000) Luminescent sensor molecules based on coordinated metals: a review of recent developments. Coord Chem Rev 205(1):201–228. doi:10.1016/s0010-8545(00)00240-x

    Google Scholar 

  125. Demas JN, DeGraff BA, Coleman PB (1999) Oxygen sensors based on luminescence quenching. Anal Chem 71(23):793A–800A. doi:10.1021/ac9908546

    Google Scholar 

  126. Zhou C, Shi Y, Ding X, Li M, Luo J, Lu Z, Xiao D (2013) Development of a fast and sensitive glucose biosensor using iridium complex-doped electrospun optical fibrous membrane. Anal Chem 85(2):1171–1176. doi:10.1021/ac303107d

    Google Scholar 

  127. Wang LY, Xu Y, Lin Z, Zhao N, Xu YH (2011) Electrospinning fabrication and oxygen sensing properties of Cu(I) complex-polystyrene composite microfibrous membranes. J Lumin 131(7):1277–1282. doi:10.1016/j.jlumin.2011.03.017

    Google Scholar 

  128. Kuo CC, Tung YC, Chen WC (2010) Morphology and pH sensing characteristics of new luminescent electrospun fibers prepared from poly(phenylquinoline)-block-polystyrene/polystyrene blends. Macromol Rapid Commun 31(1):65–70. doi:10.1002/marc.200900566

    Google Scholar 

  129. Liu CL, Lin CH, Kuo CC, Lin ST, Chen WC (2011) Conjugated rod-coil block copolymers: synthesis, morphology, photophysical properties, and stimuli-responsive applications. Prog Polym Sci 36(5):603–637. doi:10.1016/j.progpolymsci.2010.07.008

    Google Scholar 

  130. Kind H, Yan HQ, Messer B, Law M, Yang PD (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14(2):158–160. doi:10.1002/1521-4095(20020116)14:2<158::aid-adma158>3.0.co;2-w

    Google Scholar 

  131. Lin D, Wu H, Zhang W, Li H, Pan W (2009) Enhanced UV photoresponse from heterostructured Ag-ZnO nanowires. Appl Phys Lett 94(17). doi:10.1063/1.3126045

  132. Wu H, Sun Y, Lin D, Zhong R, Zhang C, Pan W (2009) GaN nanofibers based on electrospinning: facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv Mater 21(2):227–231. doi:10.1002/adma.200800529

    Google Scholar 

  133. Lai C, Wang X, Zhao Y, Fong H, Zhu Z (2013) Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers. RSC Adv 3(18):6640–6645. doi:10.1039/c3ra23420g

    Google Scholar 

  134. Anitha S, Brabu B, Rajesh KP, Natarajan TS (2013) Fabrication of UV sensor based on electrospun composite fibers. Mater Lett 92:417–420. doi:10.1016/j.matlet.2012.11.005

    Google Scholar 

  135. Li Y, Gong J, He G, Deng Y (2012) Enhancement of photoresponse and UV-assisted gas sensing with Au decorated ZnO nanofibers. Mater Chem Phys 134(2–3):1172–1178. doi:10.1016/j.matchemphys.2012.04.014

    Google Scholar 

  136. Zhu ZT, Zhang LF, Howe JY, Liao YL, Speidel JT, Smith S, Fong H (2009) Aligned electrospun ZnO nanofibers for simple and sensitive ultraviolet nanosensors. Chem Commun 18:2568–2570. doi:10.1039/b901426h

    Google Scholar 

  137. Garrido JA, Monroy E, Izpura I, Munoz E (1998) Photoconductive gain modelling of GaN photoconductors. Semicond Sci Technol 13(6):563–568. doi:10.1088/0268-1242/13/6/005

    Google Scholar 

  138. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol–gel materials. Chem Mater 6(10):1605–1614. doi:10.1021/cm00046a008

    Google Scholar 

  139. Im JS, Kim JG, Bae TS, Yu HR, Lee YS (2011) Surface modification of electrospun spherical activated carbon for a high-performance biosensor electrode. Sens Actuator B Chem 158(1):151–158. doi:10.1016/j.snb.2011.05.058

    Google Scholar 

  140. Scampicchio M, Arecchi A, Lawrence NS, Mannino S (2010) Nylon nanofibrous membrane for mediated glucose biosensing. Sens Actuator B Chem 145(1):394–397. doi:10.1016/j.snb.2009.12.042

    Google Scholar 

  141. Wilson R, Turner APF (1992) Glucose-oxidase-an ideal enzyme. Biosens Bioelectron 7(3):165–185. doi:10.1016/0956-5663(92)87013-f

    Google Scholar 

  142. Im JS, Yun J, Kim JG, Bae TS, Lee YS (2012) The effects of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes. Appl Surf Sci 258(7):2219–2225. doi:10.1016/j.apsusc.2011.08.017

    Google Scholar 

  143. Ren G, Xu X, Liu Q, Cheng J, Yuan X, Wu L, Wan Y (2006) Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym 66(12):1559–1564. doi:10.1016/j.reactfunctpolym.2006.05.005

    Google Scholar 

  144. Liu G, Zheng B, Jiang Y, Cai Y, Du J, Yuan H, Xiao D (2012) Improvement of sensitive CuO NFs-ITO nonenzymatic glucose sensor based on in situ electrospun fiber. Talanta 101:24–31. doi:10.1016/j.talanta.2012.08.040

    Google Scholar 

  145. Liu Y, Teng H, Hou H, You T (2009) Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens Bioelectron 24(11):3329–3334. doi:10.1016/j.bios.2009.04.032

    Google Scholar 

  146. Xiao Y, Ju HX, Chen HY (1999) Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Anal Chim Acta 391(1):73–82. doi:10.1016/s0003-2670(99)00196-8

    Google Scholar 

  147. Mao X, Simeon F, Rutledge GC, Hatton TA (2013) Electrospun carbon nanofiber webs with controlled density of states for sensor applications. Adv Mater 25(9):1309–1314. doi:10.1002/adma.201203045

    Google Scholar 

  148. Ouyang Z, Li J, Wang J, Li Q, Ni T, Zhang X, Wang H, Li Q, Su Z, Wei G (2013) Fabrication, characterization and sensor application of electrospun polyurethane nanofibers filled with carbon nanotubes and silver nanoparticles. J Mater Chem B 1(18):2415–2424. doi:10.1039/c3tb20316f

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 51173022 and 51273038), the Shanghai Nano Special Projects (11nm0502900), the Shanghai Committee of Science and Technology (No. 12JC1400101), the Huo Yingdong Foundation (131070), the Program for New Century Talents of the University in China, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, X., Li, Y., Ding, B. (2014). Electrospun Nanofiber-Based Sensors. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_11

Download citation

Publish with us

Policies and ethics