Skip to main content

Electrospun Nanofibrous Sorbents and Membranes for Carbon Dioxide Capture

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

CO2 emission resulting from combustion of fossil fuel is a major anthropogenic factor for global warming. Current commercial CO2 capture approaches using aqueous amine scrubbing require high energy consumption for regeneration which leads to significantly decreased efficiency. Therefore, novel CO2 capture materials and technologies for economical CO2 capture are of the utmost importance. Nanofibers, mainly fabricated by electrospinning, have unique porous structure, high surface area, and good mechanical properties thereby exhibit potential as advanced sorbents for CO2 capture and storage. More significantly, nanofiber-based sorbents are expected to have extremely low resistance for gas transport and extremely fast kinetics due to the unique structure of nanofibers. In this chapter, we summarize recent progress in the development of electrospun nanofibrous sorbents or membranes (e.g., nanofiber-supported metal-organic frameworks, carbon nanofibers, ionic liquid-based nanofibrous membranes, metal oxide nanofibers, etc.) for CO2 capture, describe the types of nanofibrous materials that have been developed, and discuss their fabrication variables and CO2 adsorption performance in detail. This chapter may pave the way for developing advanced nanofibrous sorbents for CO2 capture from power plants and even the atmosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5(6):7306–7322. doi:10.1039/c1ee02668b

    Article  Google Scholar 

  2. Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci 5(6):7323–7327. doi:10.1039/c2ee21653a

    Article  Google Scholar 

  3. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943. doi:10.1126/science.1152516

    Article  Google Scholar 

  4. Liu J, Thallapally PK, McGrail BP, Brown DR (2012) Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem Soc Rev 41(6):2308–2322. doi:10.1039/c1cs15221a

    Article  Google Scholar 

  5. Jiang B, Wang X, Gray ML, Duan Y, Luebke D, Li B (2013) Development of amino acid and amino acid-complex based solid sorbents for CO2 capture. Appl Energy 109:112–118, doi: http://dx.doi.org/10.1016/j.apenergy.2013.03.070

    Article  Google Scholar 

  6. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9):796–854

    Article  Google Scholar 

  7. Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447, doi: http://dx.doi.org/10.1016/j.apenergy.2012.09.009

    Article  Google Scholar 

  8. Lee ZH, Lee KT, Bhatia S, Mohamed AR (2012) Post-combustion carbon dioxide capture: evolution towards utilization of nanomaterials. Renew Sust Energy Rev 16(5):2599–2609. doi:10.1016/j.rser.2012.01.077

    Article  Google Scholar 

  9. Yang ZH, Zhao M, Florin NH, Harris AT (2009) Synthesis and characterization of CaO nanopods for high temperature CO2 capture. Ind Eng Chem Res 48(24):10765–10770. doi:10.1021/Ie901137s

    Article  Google Scholar 

  10. Ding B, Wang MR, Wang XF, Yu JY, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27, doi: http://dx.doi.org/10.1016/S1369-7021(10)70200-5

    Article  Google Scholar 

  11. Wang XF, Ding B, Yu JY, Wang MR (2011) Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. J Mater Chem 21(40):16231–16238. doi:10.1039/C1jm13037d

    Article  Google Scholar 

  12. Wang XF, Ding B, Yu JY, Wang MR (2011) Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 6(5):510–530. doi:10.1016/j.nantod.2011.08.004

    Article  Google Scholar 

  13. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma ZW, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50. doi:10.1016/S1369-7021(06)71389-X

    Article  Google Scholar 

  14. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170. doi:10.1002/adma.200400719

    Article  Google Scholar 

  15. Wu YN, Li FT, Liu HM, Zhu W, Teng MM, Jiang Y, Li WN, Xu D, He DH, Hannam P, Li GT (2012) Electrospun fibrous mats as skeletons to produce free-standing MOF membranes. J Mater Chem 22(33):16971–16978. doi:10.1039/C2jm32570e

    Article  Google Scholar 

  16. Meng LY, Park SJ (2010) Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers. J Colloid Interface Sci 352(2):498–503. doi:10.1016/j.jcis.2010.08.048

    Article  Google Scholar 

  17. Han KK, Ma L, Zhao HM, Li X, Chun Y, Zhu JH (2012) In situ synthesis of SBA-3/cotton fiber composite materials: a hybrid device for CO2 capture. Microporous Mesoporous Mater 151:157–162. doi:10.1016/j.micromeso.2011.10.043

    Article  Google Scholar 

  18. Brennecke JE, Gurkan BE (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 1(24):3459–3464. doi:10.1021/Jz1014828

    Article  Google Scholar 

  19. D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082. doi:10.1002/anie.201000431

    Article  Google Scholar 

  20. Wang X, Akhmedov NG, Duan Y, Luebke D, Li B (2013) Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture. J Mater Chem A 1(9):2978–2982. doi:10.1039/C3TA00768E

    Article  Google Scholar 

  21. Tang JB, Tang HD, Sun WL, Plancher H, Radosz M, Shen YQ (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 26:3325–3327. doi:10.1039/B501940k

    Google Scholar 

  22. Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128(4):1304–1315. doi:10.1021/Ja056639q

    Article  Google Scholar 

  23. Pandey P, Chauhan R (2001) Membranes for gas separation. Prog Polym Sci 26(6):853–893, doi: http://dx.doi.org/10.1016/0376-7388(93)80013-N

    Article  Google Scholar 

  24. Li P, Zhang S, Chen S, Zhang Q, Pan J, Ge B (2008) Preparation and adsorption properties of polyethylenimine containing fibrous adsorbent for carbon dioxide capture. J Appl Polym Sci 108(6):3851–3858. doi:10.1002/app.27937

    Article  Google Scholar 

  25. Li P, Ge B, Zhang S, Chen S, Zhang Q, Zhao Y (2008) CO2 capture by polyethylenimine-modified fibrous adsorbent. Langmuir 24(13):6567–6574. doi:10.1021/la800791s

    Article  Google Scholar 

  26. Yang Y, Li H, Chen S, Zhao Y, Li Q (2010) Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber. Langmuir 26(17):13897–13902. doi:10.1021/la101281v

    Article  Google Scholar 

  27. Thiruvenkatachari R, Su S, An H, Yu XX (2009) Post combustion CO2 capture by carbon fibre monolithic adsorbents. Prog Energy Combust Sci 35(5):438–455. doi:10.1016/j.pecs.2009.05.003

    Article  Google Scholar 

  28. Shen W, Zhang S, He Y, Li J, Fan W (2011) Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. J Mater Chem 21(36):14036–14040. doi:10.1039/c1jm12585k

    Article  Google Scholar 

  29. Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18(44):5326–5334. doi:10.1039/B804128h

    Article  Google Scholar 

  30. Wang X, Ding B, Yu J, Wang M, Pan F (2010) A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 21(5). doi:10.1088/0957-4484/21/5/055502

    Google Scholar 

  31. Zacher D, Shekhah O, Woll C, Fischer RA (2009) Thin films of metal-organic frameworks. Chem Soc Rev 38(5):1418–1429. doi:10.1039/B805038b

    Article  Google Scholar 

  32. Schoedel A, Scherb C, Bein T (2010) Oriented nanoscale films of metal-organic frameworks by room-temperature gel-layer synthesis. Angew Chem Int Ed 49(40):7225–7228. doi:10.1002/anie.201001684

    Article  Google Scholar 

  33. Li YS, Bux H, Feldhoff A, Li GL, Yang WS, Caro J (2010) Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes. Adv Mater 22(30):3322–3324. doi:10.1002/adma.201000857

    Article  Google Scholar 

  34. Venna SR, Jasinski JB, Carreon MA (2010) Structural evolution of zeolitic imidazolate framework-8. J Am Chem Soc 132(51):18030–18033. doi:10.1021/Ja109268m

    Article  Google Scholar 

  35. Ostermann R, Cravillon J, Weidmann C, Wiebcke M, Smarsly BM (2011) Metal-organic framework nanofibers via electrospinning. Chem Commun 47(1):442–444. doi:10.1039/C0cc02271c

    Article  Google Scholar 

  36. Tenney C, Lastoskie C (2006) Molecular simulation of carbon dioxide adsorption in chemically and structurally heterogeneous porous carbons. Environ Prog 25(4):343–354

    Article  Google Scholar 

  37. Moon S-H, Shim J-W (2006) A novel process for CO2/CH4 gas separation on activated carbon fibers-electric swing adsorption. J Colloid Interface Sci 298(2):523–528, doi: http://dx.doi.org/10.1016/j.jcis.2005.12.052

    Article  Google Scholar 

  38. Bai BC, Kim JG, Im JS, Jung S-C, Lee Y-S (2011) Influence of oxyfluorination on activated carbon nanofibers for CO2 storage. Carbon Lett 12:236–242, doi: http://carbonlett.org/10.5714/CL.2011.12.4.236

    Article  Google Scholar 

  39. Katepalli H, Bikshapathi M, Sharma CS, Verma N, Sharma A (2011) Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chem Eng J 171(3):1194–1200. doi:10.1016/j.cej.2011.05.025

    Article  Google Scholar 

  40. Ilconich J, Myers C, Pennline H, Luebke D (2007) Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125 degrees C. J Membr Sci 298(1–2):41–47. doi:10.1016/j.memsci.2007.03.056

    Article  Google Scholar 

  41. Yoo S, Won J, Kang SW, Kang YS, Nagase S (2010) CO2 separation membranes using ionic liquids in a nafion matrix. J Membr Sci 363(1–2):72–79. doi:10.1016/j.memsci.2010.07.013

    Article  Google Scholar 

  42. Chen H, Elabd YA (2009) Polymerized ionic liquids: solution properties and electrospinning. Macromolecules 42(9):3368–3373. doi:10.1021/Ma802347t

    Article  Google Scholar 

  43. Bender ET, Katta P, Lotus A, Park SJ, Chase GG, Ramsier RD (2006) Identification of CO2 sequestered in electrospun metal oxide nanofibers. Chem Phys Lett 423(4–6):302–305. doi:10.1016/j.cplett.2006.03.092

    Article  Google Scholar 

  44. Jiang B, Kish V, Fauth DJ, Gray ML, Pennline HW, Li B (2011) Performance of amine-multilayered solid sorbents for CO2 removal: effect of fabrication variables. Int J Greenhouse Gas Control 5(5):1170–1175. doi:10.1016/j.ijggc.2011.05.035

    Article  Google Scholar 

  45. Li B, Jiang B, Fauth DJ, Gray MML, Pennline HW, Richards GA (2011) Innovative nano-layered solid sorbents for CO2 capture. Chem Commun 47(6):1719–1721

    Article  Google Scholar 

Download references

Acknowledgments

This technical effort was performed with support of the US Department of Energy, National Energy Technology Laboratory’s ongoing research in carbon management under RES contract DE-FE0004000. Support from WV NASA EPSCoR was also acknowledged. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies or their institutions. The authors thank Suzanne Danley for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, X., Li, B. (2014). Electrospun Nanofibrous Sorbents and Membranes for Carbon Dioxide Capture. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_10

Download citation

Publish with us

Policies and ethics