Advertisement

Emergence of Global Speed Patterns in a Traffic Scenario

  • Richard Holzer
  • Hermann de Meer
  • Cristina Beltran Ruiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8221)

Abstract

We investigate different analysis methods for traffic data. The measure for emergence can be used to identify global dependencies in data sets. The measure for target orientation can be used to identify dangerous situations in traffic. We apply these measures in a use case on a data set of the M30 highway in Madrid. The evaluation shows that the measures can be used to predict or to identify abnormal events like accidents in traffic by an evaluation of velocity data or flow data measured by detectors at the road. Such events leads to a decrease of the measures of emergence and target orientation.

Keywords

Quantitative Measures Emergence Target Orientation Traffic Safety 

References

  1. 1.
    Masinick, J., Teng, H.: An analysis on the impact of rubbernecking on urban freeway traffic. Tech. Rep., Centre for Transportation Studies of the University of Virginia (2004)Google Scholar
  2. 2.
    Fullerton, M., Holzer, R., De Meer, H., Beltran, C.: Novel assessment of a peer-peer road accident survival system. In: IEEE Self-adaptive and Self-organizing Systems Workshop Eval4SASO 2012 (2012)Google Scholar
  3. 3.
    Holzer, R., de Meer, H., Bettstetter, C.: On autonomy and emergence in self-organizing systems. In: Hummel, K.A., Sterbenz, J.P.G. (eds.) IWSOS 2008. LNCS, vol. 5343, pp. 157–169. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Holzer, R., de Meer, H.: Quantitative Modeling of Self-organizing Properties. In: Spyropoulos, T., Hummel, K.A. (eds.) IWSOS 2009. LNCS, vol. 5918, pp. 149–161. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Auer, C., Wüchner, P., de Meer, H.: The degree of global-state awareness in self-organizing systems. In: Spyropoulos, T., Hummel, K.A. (eds.) IWSOS 2009. LNCS, vol. 5918, pp. 125–136. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Assenmacher, S., Killat, M., Schmidt-Eisenlohr, F., Vortisch, P.: A simulative approach for the identification of possibilities and impacts of v2xcommunication. In: 15th World Congress on ITS, pp. 29–38 (2008)Google Scholar
  7. 7.
    Klein, A.: Untersuchung der Harmonisierungswirkung von Streckenbeeinflussungsanlagen. In: 4. Aachener Simulations Symposium (2011)Google Scholar
  8. 8.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. 2nd edn. Wiley (2006)Google Scholar
  9. 9.
    Holzer, R., De Meer, H.: Methods for approximations of quantitative measures in self-organizing systems. In: Bettstetter, C., Gershenson, C. (eds.) IWSOS 2011. LNCS, vol. 6557, pp. 1–15. Springer, Heidelberg (2011), The original publication is available at www.springerlink.com CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Richard Holzer
    • 1
  • Hermann de Meer
    • 1
  • Cristina Beltran Ruiz
    • 2
  1. 1.Faculty of Informatics and MathematicsUniversity of PassauPassauGermany
  2. 2.SICEAlcobendasSpain

Personalised recommendations