Advertisement

A Semantic-Based Algorithm for Data Dissemination in Opportunistic Networks

  • Marco Conti
  • Matteo Mordacchini
  • Andrea Passarella
  • Liudmila Rozanova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8221)

Abstract

The opportunistic data dissemination problem for mobile devices is an open topic that has attracted many investigations so far. At the best of our knowledge, none of these approaches takes into account the semantic side of the data shared in an opportunistic network. In this paper, we present an algorithm that, starting from the semantic data annotations given by the users themselves, builds a semantic network representation of the information. Exploiting this description, we detail how two different semantic networks can interact upon contact, in order to spread and receive useful information. In order to provide a performance evaluation of such a solution, we show a preliminary set of results obtained in a simulated scenario.

References

  1. 1.
    Conti, M., Das, S.K., Bisdikian, C., Kumar, M., Ni, L.M., Passarella, A., Roussos, G., Trster, G., Tsudik, G., Zambonelli, F.: Looking ahead in pervasive computing: Challenges and opportunities in the era of cyberphysical convergence. Pervasive and Mobile Computing 8(1), 2–21 (2012)CrossRefGoogle Scholar
  2. 2.
    Pelusi, L., Passarella, A., Conti, M.: Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine 44(11), 134–141 (2006)CrossRefGoogle Scholar
  3. 3.
    Lenders, V., May, M., Karlsson, G., Wacha, C.: Wireless ad hoc podcasting. SIGMOBILE Mob. Comput. Commun. Rev. 12, 65–67 (2008)CrossRefGoogle Scholar
  4. 4.
    Yoneki, E., Hui, P., Chan, S., Crowcroft, J.: A socio-aware overlay for publish/subscribe communication in delay tolerant networks. In: MSWiM, pp. 225–234 (2007)Google Scholar
  5. 5.
    Boldrini, C., Conti, M., Passarella, A.: Design and performance evaluation of contentplace, a social-aware data dissemination system for opportunistic networks. Comput. Netw. 54, 589–604 (2010)CrossRefMATHGoogle Scholar
  6. 6.
    Conti, M., Mordacchini, M., Passarella, A.: Data dissemination in opportunistic networks using cognitive heuristics. In: The Fifth IEEE WoWMoM Workshop on Autonomic and Opportunistic Communications (AOC 2011), pp. 1–6. IEEE (2011)Google Scholar
  7. 7.
    Bruno, R., Conti, M., Mordacchini, M., Passarella, A.: An analytical model for content dissemination in opportunistic networks using cognitive heuristics. In: Proceedings of the 15th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM 2012, pp. 61–68. ACM, New York (2012)Google Scholar
  8. 8.
    Schooler, L., Hertwig, R.: How forgetting aids heuristic inference. Psychological Review 112(3), 610 (2005)CrossRefGoogle Scholar
  9. 9.
    Ebbinghaus, H.: Memory: A contribution to experimental psychology, vol. 3. Teachers college, Columbia university (1913)Google Scholar
  10. 10.
    Boldrini, C., Passarella, A.: Hcmm: Modelling spatial and temporal properties of human mobility driven by users’ social relationships. Comput. Commun. 33, 1056–1074 (2010)CrossRefGoogle Scholar
  11. 11.
    Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.: CoPhIR: A test collection for content-based image retrieval. CoRR abs/0905.4627v2 (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Marco Conti
    • 1
  • Matteo Mordacchini
    • 1
  • Andrea Passarella
    • 1
  • Liudmila Rozanova
    • 1
  1. 1.IIT – CNRPisaItaly

Personalised recommendations